scholarly journals Physical Performance Improves With Time and a Functional Knee Brace in Athletes After ACL Reconstruction

2020 ◽  
Vol 8 (8) ◽  
pp. 232596712094425
Author(s):  
Laura C. Dickerson ◽  
Alexander T. Peebles ◽  
Joseph T. Moskal ◽  
Thomas K. Miller ◽  
Robin M. Queen

Background: Athletes who return to sport (RTS) after anterior cruciate ligament reconstruction (ACLR) often have reduced physical performance and a high reinjury rate. Additionally, it is currently unclear how physical performance measures can change during the RTS transition and with the use of a functional knee brace. Purpose/Hypothesis: The purpose of this study was to examine the effects of time since surgery (at RTS and 3 months after RTS) and of wearing a brace on physical performance in patients who have undergone ACLR. We hypothesized that physical performance measures would improve with time and would not be affected by brace condition. Study Design: Controlled laboratory study. Methods: A total of 28 patients who underwent ACLR (9 males, 19 females) completed physical performance testing both after being released for RTS and 3 months later. Physical performance tests included the modified agility t test (MAT) and vertical jump height, which were completed with and without a knee brace. A repeated-measures analysis of variance determined the effect of time and bracing on performance measures. Results: The impact of the knee brace was different at the 2 time points for the MAT side shuffle ( P = .047). Wearing a functional knee brace did not affect any other physical performance measure. MAT times improved for total time ( P < .001) and backpedal ( P < .001), and vertical jump height increased ( P = .002) in the 3 months after RTS. Conclusion: The present study showed that physical performance measures of agility and vertical jump height improved in the first 3 months after RTS. This study also showed that wearing a knee brace did not hinder physical performance. Clinical Relevance: Wearing a functional knee brace does not affect physical performance, and therefore a brace could be worn during the RTS transition without concern. Additionally, physical performance measures may still improve 3 months past traditional RTS, therefore justifying delayed RTS.

2018 ◽  
Vol 27 (5) ◽  
pp. 491-502
Author(s):  
Thomas M. Newman ◽  
Giampietro L. Vairo ◽  
William E. Buckley

Ankle sprains represent a common musculoskeletal injury that clinicians are tasked with preventing and treating. Because of the prevalence of this injury, ankle braces have been designed to prophylactically protect the joint and reduce the incidence of repetitive sprains. Although an abundance of literature exists focusing on the efficacy of braces in preventing ankle sprains in young, healthy, and physically active populations, there is a scarcity of evidence specific to the impact of these apparatuses on functional performance; therefore, the purpose of this critically appraised topic (CAT) is to investigate the effects of ankle braces on functional performance measures in such individuals. The outcomes of this CAT will assist sport rehabilitation specialists with informed clinical decision making in managing young, healthy, and physically active populations using ankle braces. Do ankle braces hinder functional performance measures when compared with an unbraced condition in a young, healthy, and physically active population? A minimum of level II evidence research studies were surveyed for this CAT. For this CAT, 1 randomized controlled trial and 3 prospective cohort studies were selected. One study found a statistically significant main effect of increased agility run times while participants wore ankle braces. Another study demonstrated a statistically significant decrease in vertical jump height and ankle range of motion while wearing braces. No other statistically significant findings were reported among studies comparing unbraced with braced conditions. Current data indicate that young, healthy, and physically active individuals may experience varied performance effects when executing specific functional performance tasks while wearing ankle braces. In general, bracing does not appear to significantly impair performance on most functional tasks; however, decrements were noted to increases in agility run time and decreases in vertical jump height. Subsequent analysis indicated that a brace may result in decreased ankle plantarflexion, dorsiflexion, eversion, and inversion range of motion, which may underpin noted performance deficits.


Sports ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Corey Peacock ◽  
Mauricio Mena ◽  
Gabriel Sanders ◽  
Tobin Silver ◽  
Douglas Kalman ◽  
...  

The purpose of this investigation is to present observational data regarding sleep variables in professional Mixed Martial Arts (MMA) athletes. These sleep performance measures were related to physical performance and injury in MMA athletes. Eight professional athletes were placed into a quasi-controlled, multivariable fight-camp environment for a six-week period in preparation for fight competition. Throughout a six-week fight camp environment, athletes were continuously monitored for sleep performance measures (sleep latency, sleep efficiency, onset, and wake variances) via validated wearable sleep monitoring technology. Athletes were tested seven days prior to competition on measures of physical performance (vertical jump, VO2max, heart rate recovery, prowler sled push, and pull-ups). Multiple correlational analyses were utilized to assess relationships between all sleep and physical performance measures. There were significant (P < 0.05) correlations between sleep latency and VO2max, heart rate recovery, prowler sled push, vertical jump, and missed practice sessions. There were also significant (P < 0.05) correlations between average fall asleep time and heart rate recovery. Lastly, there were significant (P < 0.05) correlations between sleep efficiency, heart rate recovery, and missed practice sessions. MMA athletes who exhibited consistency in sleep demonstrated stronger relationships with performance testing during the fight-camp period.


2021 ◽  
Vol 80 (1) ◽  
pp. 173-184
Author(s):  
Julio Cesar Barbosa de Lima Pinto ◽  
Romerito Sóstenes Canuto de Oliveira ◽  
Nicole Leite Galvão-Coelho ◽  
Raissa Nóbrega de Almeida ◽  
Alexandre Moreira ◽  
...  

Abstract The study aim was to analyze the effects of successive matches on the internal match load, stress tolerance, salivary cortisol concentration and countermovement vertical jump height in twelve youth soccer players (16.6 ± 0.5 yr; 175 ± 8 cm; 65 ± 8 kg) who performed four official matches within a four day-period with a 24-h recovery interval between the matches. The internal match load, monotony index and competitive strain, as well as stress tolerance were examined. Saliva samples were collected and countermovement vertical jump height was assessed 60 min pre and 30 min post each match; delta of salivary cortisol and countermovement vertical jump height for each match were analyzed. Salivary cortisol was analyzed using an enzyme-linked immunosorbent assay. The results of ANOVA with repeated measures showed no differences between matches for the internal match load (p > 0.05). The scores of the monotony index and competitive strain were 4.3 (±2.3) and 8104 (±6795) arbitrary units, respectively. There was no difference for stress tolerance between matches (p > 0.05). Delta values of salivary cortisol were not different among the assessed matches (F(3,33) = 1.397, p = 0.351, η2: 0.09); however, delta of countermovement vertical jump height decreased from match 1 to match 4 (F(3,33) = 8.64, p < 0.001, η2: 0.44). The current findings suggest that participating in four successive matches, with 24-h of recovery in between, may not lead to changes in stress tolerance and salivary cortisol of youth players, but it may induce a decrease in players’ jumping performance after the fourth match.


Author(s):  
Saad Jawaid Khan ◽  
Soobia Saad Khan ◽  
Juliana Usman ◽  
Abdul Halim Mokhtar ◽  
Noor Azuan Abu Osman

The conservative techniques of treating knee osteoarthritis (kOA) include wearing orthoses such as knee braces and laterally wedged insoles and applying gait modification techniques such as toe-in gait and toe-out gait. This study aimed at assessing the immediate effects of these techniques in improving physical function of healthy and kOA participants. Five Osteoarthritis Research Society International (OARSI) recommended performance-based tests were randomly applied to measure physical function: (1) 30-second chair stand test (30CST), (2) 40-m (4 × 10) fast-paced walk test (40FPW), (3) stair climb test (SCT), (4) timed up and go test (TUGT) and (5) 6-minute walk test (6MWT) during a single-visit on 20 healthy and 20 kOA patients (age: 59.5 ± 7.33 and 61.5 ± 8.63 years, BMI: 69.95 ± 9.86 and 70.45 ± 8.80 kg/m2). The interventions included natural gait, toe-out gait, toe-in gait, laterally wedged insoles and knee brace. Analysis was performed through repeated-measures ANOVA and independent sample t-test. 30CST and TUGT showed no significant differences for the five test conditions ( p > 0.05). Toe-out showed profound effects via pairwise comparison in impairing the physical function while knee brace improved it during 40FPW, SCT and 6MWT. In general, all the tested conservative techniques except laterally wedged insoles had immediate effects on physical performance measures in both healthy and medial knee osteoarthritis participants. The valgus knee brace improved the parameters the most, while toe-out gait impaired them the most. Future studies can develop strategies for improving gait retraining methods on the basis of issues identified by this study.


2016 ◽  
Vol 51 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Majdi Rouis ◽  
Laure Coudrat ◽  
Hamdi Jaafar ◽  
Elvis Attiogbé ◽  
Henry Vandewalle ◽  
...  

Abstract The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg) and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg) completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1) than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1). Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 < ICC < 0.98) and maximal power performance (e.g. 0.75 < ICC < 0.97). However, multiple linear regression analysis showed that, for a given value of maximal power, the Afro-Caribbean participants jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.


2001 ◽  
Vol 10 (3) ◽  
pp. 174-183 ◽  
Author(s):  
James A. Yaggie ◽  
Stephen J. Kinzey

Context:Ankle bracing has been used for many years in an attempt to prevent lateral ligamentous injuries of the ankle by restricting joint range of motion (ROM).Objective:To examine the influence of ankle bracing on ROM and sport-related performance.Design:Repeated measures.Setting:Biomechanics laboratory.Participants:30 volunteers. None reported ankle trauma within 2 years preceding the study or had other orthopedic conditions that would have affected physical performance.Intervention:Three brace conditions (McDavid A101™, Perform-8™ Lateral Stabilizer) were assessed during performance of the vertical jump and shuttle run.Main Outcome Measures:shuttle-run time, vertical jump height, inversion, and plantar flexion ROM.Results:Both braces restricted plantar flexion and inversion ROM and caused no change in shuttle-run time or vertical jump height.Conclusions:Our results indicate that bracing the ankle joint increases external lateral support to the joint without significantly restricting functional ability.


Retos ◽  
2018 ◽  
pp. 291-294
Author(s):  
Miguel Sánchez Moreno ◽  
Carlos García Asencio ◽  
Juan José González Badillo ◽  
David Díaz Cueli

Abstract. This study aimed to analyze the effect of strength training on physical performance in elite male volleyball players during the competitive season. Athletes were assessed at the start of season (SS), midpoint of the competitive season (MS), and at the end of the season (ES). Significant increases were observed in vertical jump height (CMJ), jump squat height (JS) and mean propulsive velocity (MPV) from SS to ES (P < 0.05). Likely beneficial increases were observed on CMJ from SS to MS, on JS from SS to MS and from MS to ES. In addition, likely beneficial effect was found on MPV from MS to ES. Over the full season (SS to ES), very likely beneficial effect was observed on CMJ, MPV and JS. In conclusion, increase in strength of lower limb and vertical jump can be achieved in professional volleyball players over a full playing season. Resumen. El objetivo del estudio fue analizar los efectos de un programa de entrenamiento de fuerza sobre el rendimiento en la fuerza del miembro inferior y la capacidad de salto vertical en jugadores de voleibol masculinos durante la temporada de competición. Los atletas fueron evaluados al inicio (SS), a la mitad (MS) y al final de la temporada (ES). Se observaron aumentos significativos en la altura del salto vertical (CMJ), del salto con cargas (JS) y en la velocidad media propulsiva (MPV) alcanzada con las cargas comunes en el ejercicio de sentadillas entre SS y ES (P < 0.05). El análisis basado en la magnitud del cambio reveló un aumento probable en CMJ de SS a MS, y en JS de SS a MS y de MS a ES. Además, un incremento probable se encontró en MPV de MS a ES. Durante la temporada completa (SS a ES), se observó un aumento muy probable en CMJ, en MPV y JS. En conclusión, se puede lograr un aumento en la fuerza de la extremidad inferior y el salto vertical en jugadores profesionales de voleibol durante una temporada de juego completa.


2021 ◽  
Author(s):  
Erik Vanegas ◽  
Yolocuauhtli Salazar ◽  
Raúl Igual ◽  
Inmaculada Plaza

BACKGROUND Vertical jump height is widely used in health care and sports fields to assess muscle strength and power from lower limb muscle groups. Different approaches have been proposed for vertical jump height measurement. Some commonly used approaches need no sensor at all; however, these methods tend to overestimate the height reached by the subjects. There are also novel systems using different kind of sensors like force-sensitive resistors, capacitive sensors, and inertial measurement units, among others, to achieve more accurate measurements. OBJECTIVE The objective of this study is twofold. The first objective is to validate the functioning of a developed low-cost system able to measure vertical jump height. The second objective is to assess the effects on obtained measurements when the sampling frequency of the system is modified. METHODS The system developed in this study consists of a matrix of force-sensitive resistor sensors embedded in a mat with electronics that allow a full scan of the mat. This mat detects pressure exerted on it. The system calculates the jump height by using the flight-time formula, and the result is sent through Bluetooth to any mobile device or PC. Two different experiments were performed. In the first experiment, a total of 38 volunteers participated with the objective of validating the performance of the system against a high-speed camera used as reference (120 fps). In the second experiment, a total of 15 volunteers participated. Raw data were obtained in order to assess the effects of different sampling frequencies on the performance of the system with the same reference device. Different sampling frequencies were obtained by performing offline downsampling of the raw data. In both experiments, countermovement jump and countermovement jump with arm swing techniques were performed. RESULTS In the first experiment an overall mean relative error (MRE) of 1.98% and a mean absolute error of 0.38 cm were obtained. Bland-Altman and correlation analyses were performed, obtaining a coefficient of determination equal to <i>R</i><sup>2</sup>=.996. In the second experiment, sampling frequencies of 200 Hz, 100 Hz, and 66.6 Hz show similar performance with MRE below 3%. Slower sampling frequencies show an exponential increase in MRE. On both experiments, when dividing jump trials in different heights reached, a decrease in MRE with higher height trials suggests that the precision of the proposed system increases as height reached increases. CONCLUSIONS In the first experiment, we concluded that results between the proposed system and the reference are systematically the same. In the second experiment, the relevance of a sufficiently high sampling frequency is emphasized, especially for jump trials whose height is below 10 cm. For trials with heights above 30 cm, MRE decreases in general for all sampling frequencies, suggesting that at higher heights reached, the impact of high sampling frequencies is lesser.


10.2196/27336 ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. e27336
Author(s):  
Erik Vanegas ◽  
Yolocuauhtli Salazar ◽  
Raúl Igual ◽  
Inmaculada Plaza

Background Vertical jump height is widely used in health care and sports fields to assess muscle strength and power from lower limb muscle groups. Different approaches have been proposed for vertical jump height measurement. Some commonly used approaches need no sensor at all; however, these methods tend to overestimate the height reached by the subjects. There are also novel systems using different kind of sensors like force-sensitive resistors, capacitive sensors, and inertial measurement units, among others, to achieve more accurate measurements. Objective The objective of this study is twofold. The first objective is to validate the functioning of a developed low-cost system able to measure vertical jump height. The second objective is to assess the effects on obtained measurements when the sampling frequency of the system is modified. Methods The system developed in this study consists of a matrix of force-sensitive resistor sensors embedded in a mat with electronics that allow a full scan of the mat. This mat detects pressure exerted on it. The system calculates the jump height by using the flight-time formula, and the result is sent through Bluetooth to any mobile device or PC. Two different experiments were performed. In the first experiment, a total of 38 volunteers participated with the objective of validating the performance of the system against a high-speed camera used as reference (120 fps). In the second experiment, a total of 15 volunteers participated. Raw data were obtained in order to assess the effects of different sampling frequencies on the performance of the system with the same reference device. Different sampling frequencies were obtained by performing offline downsampling of the raw data. In both experiments, countermovement jump and countermovement jump with arm swing techniques were performed. Results In the first experiment an overall mean relative error (MRE) of 1.98% and a mean absolute error of 0.38 cm were obtained. Bland-Altman and correlation analyses were performed, obtaining a coefficient of determination equal to R2=.996. In the second experiment, sampling frequencies of 200 Hz, 100 Hz, and 66.6 Hz show similar performance with MRE below 3%. Slower sampling frequencies show an exponential increase in MRE. On both experiments, when dividing jump trials in different heights reached, a decrease in MRE with higher height trials suggests that the precision of the proposed system increases as height reached increases. Conclusions In the first experiment, we concluded that results between the proposed system and the reference are systematically the same. In the second experiment, the relevance of a sufficiently high sampling frequency is emphasized, especially for jump trials whose height is below 10 cm. For trials with heights above 30 cm, MRE decreases in general for all sampling frequencies, suggesting that at higher heights reached, the impact of high sampling frequencies is lesser.


2018 ◽  
Vol 125 (4) ◽  
pp. 749-768 ◽  
Author(s):  
Rasool Bagheri ◽  
Mohammad Reza Pourahmadi ◽  
Rozita Hedayati ◽  
Ziaeddin Safavi-Farokhi ◽  
Atefeh Aminian-far ◽  
...  

This study evaluated the relationships between trait stress, Hoffman reflex, and performance among 36 healthy amateur male athletes. We first obtained a trait stress questionnaire from participants and then assigned them to high- and low-stress groups. We next recorded Hoffman reflex data from the soleus and lateral gastrocnemius muscles and then examined their athletic performance on testing protocols separated by a 72-hour washout period. Performance testing utilized vertical jump height, 20 -m sprint time, and standing stork tests. There were significant correlations between (a) the standing stork test, vertical jump height, and trait stress and (b) Hmax/ Mmax ratios, threshold intensity ( Hth), the intensity of the Hmax, and the intensity of the Hlast. Hth, the intensity of Hmax, and the intensity of Hlast were significantly higher among the low-stress compared with the high-stress participant groups ( p < .05), despite participants’ similar training history. We suggest that self-perceived psychological stress affects performance through neural adaptation.


Sign in / Sign up

Export Citation Format

Share Document