scholarly journals The Effects of Various Running Inclines on Three-Segment Foot Mechanics and Plantar Fascia Strain

2014 ◽  
Vol 15 (4) ◽  
Author(s):  
Jonathan Sinclair ◽  
Stephen Atkins ◽  
Hayley Vincent

AbstractPurpose. There has yet to be a combined analysis of three-dimensional multi-segment foot kinematics and plantar fascia strain in running gait at various degrees of inclination. The aim of the current study was therefore to investigate the above during treadmill running at different inclines (0°, 5°, 10° and 15°). Methods. Twelve male participants ran at 4.0 m · s

2014 ◽  
Vol 10 (4) ◽  
pp. 207-214 ◽  
Author(s):  
J. Sinclair ◽  
A. Greenhalgh ◽  
P.J. Taylor ◽  
I. Bentley

There has yet to be a combined analysis of the kinetics and three-dimensional kinematics of running at various degrees of inclination. The aim of the current study was to investigate the influence of treadmill running at various inclines (flat, 5, 10 and 15 degrees) on three-dimensional kinematics of the lower extremities and accelerations measured at the tibia. Ten male participants ran at 4.0 m/s at the four different inclinations. Three-dimensional lower extremity kinematics and tibial accelerations were quantified and contrasted using repeated measures ANOVA's. Tibial acceleration parameters were reduced significantly as a function of running incline, whilst tibial internal rotation was significant greater at 15° compared to flat. This study confirms that differences in both kinetics and kinematics are mediated through alterations in running inclination. From a clinical perspective, those who are susceptible/ recovering from injury may wish to utilise an incline in their training.


2020 ◽  
Vol 10 (21) ◽  
pp. 7811
Author(s):  
Alessandra B. Matias ◽  
Paolo Caravaggi ◽  
Ulisses T. Taddei ◽  
Alberto Leardini ◽  
Isabel C. N. Sacco

Different location and incidence of lower extremity injuries have been reported in rearfoot strike (RFS) and forefoot strike (FFS) recreational runners. These might be related to functional differences between the two footstrike patterns affecting foot kinematics and thus the incidence of running injuries. The aim of this study was to investigate and compare the kinematic patterns of foot joints between naturally RFS and FFS runners. A validated multi-segment foot model was used to measure 24 foot kinematic variables in long-distance recreational runners while running on a treadmill. These variables included the three-dimensional relative motion between rearfoot, midfoot, and forefoot segments. The footstrike pattern was identified using kinematic data and slow-motion videos. Functional analysis of variance was used to compare the time series of these variables between RFS (n = 49) and FFS (n = 25) runners. In FFS runners, the metatarsal bones were less tilted with respect to the ground, and the metatarsus was less adducted with respect to the calcaneus during stance. In early stance, the calcaneus was more dorsiflexed with respect to the shank and returned to a more plantarflexed position at push-off. FFS runners showed a more adducted calcaneus with respect to the shank and a less inverted midfoot to the calcaneus. The present study has showed that the footstrike angle characterizes foot kinematics in running. These data may help shed more light on the relationship between foot function and running-related injuries.


Foot & Ankle ◽  
1989 ◽  
Vol 9 (4) ◽  
pp. 194-200 ◽  
Author(s):  
Arne Lundberg ◽  
Ian Goldie ◽  
Bo Kalin ◽  
Göran Selvik

In an in vivo investigation of eight healthy volunteers, three dimensional ankle/foot kinematics were analyzed by roentgen stereophotogrammetry in 10° steps of motion from 30° of plantar flexion to 30° of dorsiflexion of the foot. The study included all of the joints between the tibia and the first metatarsal, as well as the talocalcaneal joint, and was performed under full body load. Although the talocrural joint was found to account for most of the rotation around the transverse axis occurring from 30° of plantar flexion to 30° of dorsiflexion, there was a substantial contribution from the joints of the arch. This was seen particularly in the input arc from 30° of plantar flexion to the neutral position, where the dorsiflexion motion of these joints amounted to 10% to 41% of the total transverse axis rotation.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Noor Arifah Azwani Abdul Yamin ◽  
Khairul Salleh Basaruddin ◽  
Ahmad Faizal Salleh ◽  
Mohammad Shahril Salim ◽  
Wan Zuki Azman Wan Muhamad

Objective. The aim of this study was to investigate the effects of surface stiffness on multisegment foot kinematics and temporal parameters during running. Methods. Eighteen male subjects ran on three different surfaces (i.e., concrete, artificial grass, and rubber) in both heeled running shoes (HS) and minimal running shoes (MS). Both these shoes had dissimilar sole profiles. The heeled shoes had a higher sole at the heel, a thick base, and arch support, whereas the minimal shoes had a flat base sole. Indeed, the studied biomechanical parameters responded differently in the different footwear during running. Subjects ran in recreational mode speed while 3D foot kinematics (i.e., joint rotation and peak medial longitudinal arch (MLA) angle) were determined using a motion capture system (Qualysis, Gothenburg, Sweden). Information on stance time and plantar fascia strain (PFS) was also collected. Results. Running on different surface stiffness was found to significantly affect the peak MLA angles and stance times for both HS and MS conditions. However, the results showed that the joint rotation angles were not sensitive to surface stiffness. Also, PFS showed no relationship with surface stiffness, as the results were varied as the surface stiffness was changed. Conclusion. The surface stiffness significantly contributed towards the effects of peak MLA angle and stance time. These findings may enhance the understanding of biomechanical responses on various running surfaces stiffness in different shoe conditions.


2020 ◽  
Vol 38 (5) ◽  
pp. 518-527
Author(s):  
Masamichi Okudaira ◽  
Steffen Willwacher ◽  
Seita Kuki ◽  
Kaito Yamada ◽  
Takuya Yoshida ◽  
...  

2016 ◽  
Vol 106 (6) ◽  
pp. 419-426 ◽  
Author(s):  
Joana F. Hornestam ◽  
Thales R. Souza ◽  
Paula Arantes ◽  
Juliana Ocarino ◽  
Paula L. Silva

Background: The relation between walking speed and foot kinematics during gait is not well established, and neither is it clear whether this relation is modified in the presence of factors expected to increase pronation (eg, abnormal foot alignment). Understanding how foot kinematics is affected by walking speed under varying conditions could contribute to our understanding of stresses to the musculoskeletal system during walking. We evaluated the effect of walking speed on foot kinematics in the frontal plane during gait and determined whether this effect is modified by using medially inclined insoles that force the foot into increased pronation. Methods: Twenty-six healthy young adults were assessed while walking on a treadmill wearing flat insoles and wearing medially inclined insoles. Foot kinematics in the frontal plane was measured with a three-dimensional motion analysis system. Data were analyzed during the stance phase of gait. Results: There was no main effect of speed on average calcaneal position. However, there was a significant insole type × walking speed interaction effect. In the flat insole condition, increased walking speed was associated with a less inverted average calcaneal position (or greater magnitudes of eversion), whereas in the inclined insole condition, higher speeds were associated with a less everted average calcaneal position (or increased magnitudes of inversion). Conclusions: The magnitude of foot eversion increases at faster gait speeds under typical conditions. In the presence of factors that induce excessive pronation, however, this effect is reversed. Results suggest that individuals use greater active control of foot motion at faster speeds in the presence of excessive pronation to improve push-off efficiency. Potential clinical consequences of this functional strategy are discussed.


Author(s):  
Ying Yue Zhang ◽  
Gusztáv Fekete ◽  
Justin Fernandez ◽  
Yao Dong Gu

To determine the influence of the unstable sole structure on foot kinematics and provide theoretical basis for further application.12 healthy female subjects walked through a 10-meter experimental channel with normal speed wearing experimental shoes and control shoes respectively at the gait laboratory. Differences between the groups in triplanar motion of the forefoot, rearfoot and hallux during walking were evaluated using a three-dimensional motion analysis system incorporating with Oxford Foot Model (OFM). Compare to contrast group, participants wearing experimental shoes demonstrated greater peak forefoot dorsiflexion, forefoot supination and longer halluces plantar flexion time in support phase. Additionally, participants with unstable sole structure also demonstrated smaller peak forefoot plantarflexion, rearfoot dorsiflexion and range of joint motion in sagittal plane and frontal plane.. The difference mainly appeared in sagittal and frontal plane. With a stimulation of unstable, it may lead to the reinforcement of different flexion between middle and two ends of the foot model. The greater forefoot supination is infered that the unstable element structure may affect the forefoot motion on the frontal plane and has a control effect to strephexopodia people. The stimulation also will reflexes reduce the range of rearfoot motion in sagittal and frontal planes to control the gravity center of the body and keep a steady state in the process of walking.


2011 ◽  
Vol 46 (4) ◽  
pp. 358-365 ◽  
Author(s):  
Stephen C. Cobb ◽  
Laurie L. Tis ◽  
Jeffrey T. Johnson ◽  
Yong “Tai” Wang ◽  
Mark D. Geil

Context: Foot-orthosis (FO) intervention to prevent and treat numerous lower extremity injuries is widely accepted clinically. However, the results of quantitative gait analyses have been equivocal. The foot models used, participants receiving intervention, and orthoses used might contribute to the variability. Objective: To investigate the effect of a custom-molded FO intervention on multisegment medial foot kinematics during walking in participants with low-mobile foot posture. Design: Crossover study. Setting: University biomechanics and ergonomics laboratory. Patients or Other Participants: Sixteen participants with low-mobile foot posture (7 men, 9 women) were assigned randomly to 1 of 2 FO groups. Intervention(s): After a 2-week period to break in the FOs, individuals participated in a gait analysis that consisted of 5 successful walking trials (1.3 to 1.4 m/s) during no-FO and FO conditions. Main Outcome Measure(s): Three-dimensional displacements during 4 subphases of stance (loading response, mid-stance, terminal stance, preswing) were computed for each multisegment foot model articulation. Results: Repeated-measures analyses of variance (ANOVAs) revealed that rearfoot complex dorsiflexion displacement during midstance was greater in the FO than the no-FO condition (F1,14 = 5.24, P = .04, partial η2 = 0.27). Terminal stance repeated-measures ANOVA results revealed insert-by-insert condition interactions for the first metatarsophalangeal joint complex (F1,14 = 7.87, P = .01, partial η2 = 0.36). However, additional follow-up analysis did not reveal differences between the no-FO and FO conditions for the balanced traditional orthosis (F1,14 = 4.32, P = .08, partial η2 = 0.38) or full-contact orthosis (F1,14 = 4.10, P = .08, partial η2 = 0.37). Conclusions: Greater rearfoot complex dorsiflexion during midstance associated with FO intervention may represent improved foot kinematics in people with low-mobile foot postures. Furthermore, FO intervention might partially correct dys-functional kinematic patterns associated with low-mobile foot postures.


2021 ◽  
Vol 15 ◽  
Author(s):  
Issei Ogasawara ◽  
Noriaki Hattori ◽  
Gajanan S. Revankar ◽  
Shoji Konda ◽  
Yuki Uno ◽  
...  

Objectives: Runner’s dystonia is a task-specific dystonia that occurs in the lower limbs and trunk, with diverse symptomatology. We aimed to identify the origin of a dystonic movement abnormality using combined three-dimensional kinematic analysis and electromyographic (EMG) assessment during treadmill running.Participant: A 20-year-old female runner who complained of right-foot collision with the left-leg during right-leg swing-phase, which mimicked right-ankle focal dystonia.Results: Kinematic and EMG assessment of her running motion was performed, which showed a significant drop of the left pelvis during right-leg stance-phase, and a simultaneous increase of right hip adductor muscle activity. This resulted in a pronounced adduction of the entire right lower limb with respect to the pelvis segment. Trajectories of right foot were seen to encroach upon left-leg area.Discussion: These findings suggested that the symptom of this runner was most likely a form of segmental dystonia originating from an impaired control of hip and pelvis, rather than a distal focal ankle dystonia.Conclusion: We conclude that, for individualized symptom assessment, deconstructing the symptom origin from its secondary compensatory movement is crucial for characterizing dystonia. Kinematic and EMG evaluation will therefore be a prerequisite to distinguish symptom origin from secondary compensatory movement.


Author(s):  
Christopher S. Adam ◽  
Ian R. Berry ◽  
Kevin M. Short ◽  
Diana I. Saly

Traditional analysis of running gait utilizes averaged biomechanical data from several strides to generate a mean curve. This curve is then used to define the average picture of a runners gait. However, such measures are frequently accompanied by time normalization, which results in a loss of temporal variations in the gait patterns. An examination of stability requires analysis of both time and position, therefore loss of such information makes stability analysis difficult. On the contrary, the use of a dynamical systems approach for gait analysis allows for a better understanding of how variations in gait pattern change over time. In the current study runners ran on a treadmill, with both a flat and uneven surface, at a self selected speed. Three-dimensional position data was captured for 11 different anatomical locations at a frequency of 120 Hz using a Qualysis motion capture system. The data was first shifted to a lumbar coordinate system to account for low frequency drift attributed to the subjects’ drift on the treadmill. Since all of the markers were rigidly connected, via the subject, the movements and variations of certain components of the 33-dimensional measurements were not independent. As a result, it was possible to reduce the dimensionality of the transformed data using singular value decomposition techniques. The primary components were then analyzed using the method of delay embeddings to extract geometric information, revealing the natural structure found in the data as a result of the periodicity of each running stride. A nearest neighbor mean stride orbit was then computed to create a reference orbit, so that deviations from the mean stride orbit can be measured. The expectation was that a more stable running configuration would lead to smaller deviations from the mean stride orbit. On-going work that will be reported includes: (i) analysis of running stability related to the reference stride comparator, (ii) compensation of lumbar centroid dynamics, (iii) reconstructions using one dimension from the lumbar centroid transformed data, and (iv) consideration of transients, fatigue, adaptation, etc.


Sign in / Sign up

Export Citation Format

Share Document