scholarly journals Simple Flows of Pseudoplastic Fluids Based on Dehaven Model

2017 ◽  
Vol 22 (4) ◽  
pp. 1035-1044
Author(s):  
A. Walicka

Abstract In this paper three simple flows of visco-plastic fluids of DeHaven type or fluids similar to them are considered. These flows are: Poiseuille flow in a plane channel, Poiseuille flow through a circular pipe and rotating Couette flow between two coaxial cylinders. After presentation DeHaven model it was presented some models of fluids similar to this model. Next it was given the solutions of equations of motion for three flows mentioned above.

2017 ◽  
Vol 22 (4) ◽  
pp. 1019-1033
Author(s):  
A. Walicka

Abstract The present investigation is concerned with basic flows of generalized second grade fluids based on a Sisko fluid. After formulation of the general equations of motion three simple flows of viscoplastic fluids of a Sisko type or fluids similar to them are considered. These flows are: Poiseuille flow in a plane channel, Poiseuille flow in a circular pipe and rotating Couette flow between two coaxial cylinders. After presentation the Sisko model one was presented some models of fluids similar to this model. Next it was given the solutions of equations of motion for three flows mentioned above.


1960 ◽  
Vol 9 (3) ◽  
pp. 371-389 ◽  
Author(s):  
J. Watson

In Part 1 by Stuart (1960), a study was made of the growth of an unstable infinitesimal disturbance, or the decay of a finite disturbance through a stable infinitesimal disturbance to zero, in plane Poiseuille flow, and that paper gave the most important terms in a solution of the equations of motion. The greater part of the present paper is concerned with a re-formulation of this problem which readily yields the complete solution. By the same method a solution for Couette flow is obtained. This solution is only a formal one for the present because the conditions imposed in deriving the solution may not be valid for Couette flow; this flow is believed to be stable to infinitesimal disturbances of the type considered.


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2011 ◽  
Vol 8 (1) ◽  
pp. 143-152
Author(s):  
S.F. Khizbullina

The steady flow of anomalous thermoviscous liquid between the coaxial cylinders is considered. The inner cylinder rotates at a constant angular velocity while the outer cylinder is at rest. On the basis of numerical experiment various flow regimes depending on the parameter of viscosity temperature dependence are found.


2011 ◽  
Vol 56 (1) ◽  
pp. 49-54 ◽  
Author(s):  
V. N. Popov ◽  
I. V. Testova ◽  
A. A. Yushkanov

2016 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Madhura K R ◽  
Uma M S

<p><span lang="EN-IN">The flow of an unsteady incompressible electrically conducting fluid with uniform distribution of dust particles in a constricted channel has been studied. The medium is assumed to be porous in nature. The governing equations of motion are treated analytically and the expressions are obtained by using variable separable and Laplace transform techniques. The influence of the dust particles on the velocity distributions of the fluid are investigated for various cases and the results are illustrated by varying parameters like Hartmann number, deposition thickness on the walls of the cylinder and the permeability of the porous medium on the velocity of dust and fluid phase.</span></p>


Author(s):  
Hubert Miton ◽  
Youssef Doumandji ◽  
Jacques Chauvin

This paper describes a fast computation method of the flow through multistage axial compressors of the industrial type. The flow is assumed to be axisymmetric between the blade rows which are represented by actuator disks. Blade row losses and turning are calculated by means of correlations. The equations of motion are linearized with respect to the log of static pressure, whose variation along the radius is usually of limited extent for the type of machines for which the method has been developed. In each computing plane (i.e. between the blade rows) two flows are combined: a basic flow with constant pressure satisfying the mass flow requirements and a perturbation flow fulfilling the radial equilibrium condition. The results of a few sample calculations are given. They show a satisfactory agreement with a classical duct flow method although the computing time is reduced by a factor five. The method has also been coupled with a surge line prediction calculation.


2019 ◽  
Vol 75 ◽  
pp. 29-43 ◽  
Author(s):  
Souvik Ghosh ◽  
Jean-Christophe Loiseau ◽  
Wim-Paul Breugem ◽  
Luca Brandt

Sign in / Sign up

Export Citation Format

Share Document