scholarly journals Conducting dusty fluid flow through a constriction in a porous medium

2016 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Madhura K R ◽  
Uma M S

<p><span lang="EN-IN">The flow of an unsteady incompressible electrically conducting fluid with uniform distribution of dust particles in a constricted channel has been studied. The medium is assumed to be porous in nature. The governing equations of motion are treated analytically and the expressions are obtained by using variable separable and Laplace transform techniques. The influence of the dust particles on the velocity distributions of the fluid are investigated for various cases and the results are illustrated by varying parameters like Hartmann number, deposition thickness on the walls of the cylinder and the permeability of the porous medium on the velocity of dust and fluid phase.</span></p>

Author(s):  
B. Seshaiah ◽  
S.V.K. Varma

<div><p><em>The Objective of the present study is to investigate to free convection and mass transfer flow of a viscous incompressible and electrically conducting fluid through a porous medium bounded by vertical infinite surface with constant suction velocity and constant heat flux under the action of uniform magnetic field applied normal to the direction of flow.</em></p></div>


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094433 ◽  
Author(s):  
Madhia Rashid ◽  
Sohail Nadeem ◽  
Iqra Shahzadi

This investigation based on electromagnetohydrodynamic flow in microchannels through lightly corrugated walls effects is reported in the presence of variable liquid properties. In microparallel plates, we consider incompressible and electrically conducting viscous fluid. With small amplitudes, the wall corrugations are described by periodic sin waves. The governing equations are rendered dimensionless and solved with the help of the perturbation technique. The analytical solutions for velocity are obtained and analyzed graphically. A connection between flow rate and roughness is acquired by perturbation solutions of the stream function. By utilizing numerical computations, we analyzed the corrugation consequences on the velocity for electromagnetohydrodynamic flow. We graphically clarified the velocity and temperature profiles and their dependencies on all parameters. The three-dimensional velocity and contour distributions shown that the wall roughness can cause changes in the velocity distribution. For in phase the phase difference among the two corrugated walls is equals to 0°, and for out of phase the phase difference is equal to 180° between the two walls. The wave phenomenon of the flow shape becomes obvious with the expansion of the corrugation. The electromagnetohydrodynamic velocities first grow and then reduce. The electromagnetohydrodynamic velocity increases for Reynolds number, Hartmann number, and Darcy parameter. Velocity profile decreases for variable viscosity, velocity slip parameter.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 531-539 ◽  
Author(s):  
Tasawar Hayat ◽  
Rahmat Ellahi ◽  
Fazal Mehmood Mahomed

An analysis has been carried out for flow and heat transfer characteristics in a third grade fluid between two porous plates. The electrically conducting fluid fills the porous medium. The solutions have been developed for small porosity and magnetic field. Three flow problems are investigated and analytical expressions for the velocity field and temperature distribution are given for each case. Moreover, we recover and extend the results of Siddiqui et al. [1] by presenting exact solutions for the governing equations derived in [1].


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1405-1417 ◽  
Author(s):  
Jelena Petrovic ◽  
Zivojin Stamenkovic ◽  
Milos Kocic ◽  
Milica Nikodijevic

The magnetohydordynamic flow and heat transfer of two viscous incompressible fluids through porous medium has been investigated in the paper. Fluids flow through porous medium between two parallel fixed isothermal plates in the presence of an inclined magnetic and perpendicular electric field. Fluids are electrically conducting, while the channel plates are insulated. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and closed-form solutions are obtained. Solutions with appropriate boundary conditions for velocity and temperature fields have been obtained. The analytical results for various values of the Hartmann number, load factor, viscosity and porosity parameter have been presented graphically to show their effect on the flow and heat transfer characteristics.


2019 ◽  
Vol 8 (4) ◽  
pp. 1966-1970

A parametric study to investigate the effect of chemical reaction parameter on an MHD mixed convective mass transfer flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate. The equations of motion are work out by assuming Laplace Transform approach. The velocity profile, temperature, concentration, viscous drag, Nusselt number and the rate of mass transfer are discussed graphically by assuming some arbitrary criterion given in the present paper and physical descriptions are made. It is emphasized from the graphical portion that chemical species retards the fluid flow


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


1987 ◽  
Vol 109 (4) ◽  
pp. 535-540 ◽  
Author(s):  
W. Tabakoff ◽  
M. F. Malak

This paper describes an experimental method used to find particle restitution coefficients. The equations that govern the motion of solid particles suspended by a compressible gas flow through a turbomachine depend on the restitution coefficients. Analysis of the data obtained by a laser-Doppler velocimeter (LDV) system of the collision phenomenon gives the restitution ratios as a function of the incidence angle. From these ratios, the particle velocity components after collision are computed and used as the initial conditions to the solution of the governing equations of motion for particle trajectories. The erosion of metals impacted by small dust particles can be calculated by knowing the restitution coefficients. The alloy used in this investigation was 410 stainless steel.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
B. S. Bhadauria

The effect of temperature modulation on the onset of thermal convection in an electrically conducting fluid-saturated-porous medium, heated from below, has been studied using linear stability analysis. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small. The porous medium is confined between two horizontal walls and subjected to a vertical magnetic field; flow in porous medium is characterized by Brinkman–Darcy model. Considering only infinitesimal disturbances, and using perturbation procedure, the combined effect of temperature modulation and vertical magnetic field on thermal instability has been studied. The correction in the critical Rayleigh number is calculated as a function of frequency of modulation, Darcy number, Darcy Chandrasekhar number, magnetic Prandtl number, and the nondimensional group number χ. The influence of the magnetic field is found to be stabilizing. Furthermore, it is also found that the onset of convection can be advanced or delayed by proper tuning of the frequency of modulation. The results of the present model have been compared with that of Darcy model.


2013 ◽  
Vol 40 (3) ◽  
pp. 385-402 ◽  
Author(s):  
Rudra Deka ◽  
Ashish Paul

This paper presents an analytical solution of unsteady one-dimensional natural convective flow of a viscous incompressible and electrically conducting fluid past an infinite vertical cylinder with constant temperature and magnetic field, applied normal to the direction of flow. Exact solutions of dimensionless unsteady linear governing equations are obtained by using Laplace transform technique. Numerical computations for the transient velocity, temperature, skin-friction, Nusselt number are computed and presented in graphs for various set of physical parametric values viz; Grashof number, Prandtl number, magnetic parameter and time.


Sign in / Sign up

Export Citation Format

Share Document