Selectivity Analysis for Networks Comprising Consecutive Reactions of Second and First Order

Author(s):  
Dmitry Yu. Murzin ◽  
Irina L. Simakova ◽  
Johan Wärnå

Abstract Coupling of second and first order reactions in one pot fashion through a cascade process is an often encountered process. Consecutive reactions of this type are considered and selectivity analysis is performed demonstrating dependence of selectivity pattern on reaction parameters.

2019 ◽  
Vol 21 (8) ◽  
pp. 1907-1911 ◽  
Author(s):  
Jian Xu ◽  
Mamatjan Arkin ◽  
Yongzhen Peng ◽  
Weihua Xu ◽  
Huilei Yu ◽  
...  

The first demonstration of photochemo-enzymatic whole-cell one-pot enantiocomplementary decarboxylative hydroxylation.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1466
Author(s):  
Ye Eun Kim ◽  
Hyunsung Cho ◽  
Yoo Jin Lim ◽  
Chorong Kim ◽  
Sang Hyup Lee

Studies on a one-pot synthesis of novel multisubstituted 1-alkoxyindoles 1 and their mechanistic investigations are presented. The synthesis of 1 was successfully achieved through consecutive four step reactions from substrates 2. The substrates 2, prepared through a two-step synthetic sequence, underwent three consecutive reactions of nitro reduction, intramolecular condensation, and nucleophilic 1,5-addition to provide the intermediates, 1-hydroxyindoles 8, which then were alkylated in situ with alkyl halide to afford the novel target products 1. We optimized the reaction conditions for 1 focusing on the alkylation step, along with the consideration of formation of intermediates 8. The optimized condition was SnCl2·2H2O (3.3 eq) and alcohols (R1OH, 2.0 eq) for 1–2 h at 40 °C and then, base (10 eq) and alkyl halides (R2Y, 2.0 eq) for 1–4 h at 25–50 °C. Notably, all four step reactions were performed in one-pot to give 1 in good to modest yields. Furthermore, the mechanistic aspects were also discussed regarding the reaction pathways and the formation of side products. The significance lies in development of efficient one-pot reactions and in generation of new 1-alkoxyindoles.


1977 ◽  
Vol 55 (20) ◽  
pp. 3596-3601 ◽  
Author(s):  
Michael T. H. Liu ◽  
Barry M. Jennings

The thermal decomposition of phenyl-n-butyldiazirine and of phenylmethyldiazirine in DMSO and in HOAc have been investigated over the temperature range 80–130 °C. The intermediate diazo compounds, 1-phenyl-1-diazopentane and 1-phenyldiazoethane respectively have been detected and isolated. The decomposition of phenyl-n-butyldiazirine and the subsequent decomposition of its product, 1-phenyl-1-diazopentane, are an illustration of consecutive reactions. The kinetic parameters for the isomerization and decomposition reactions have been determined. The isomerization of phenylmethyldiazirine to 1-phenyldiazoethane is first order and probably unimolecular but the kinetics for the subsequent reactions of 1-phenyldiazoethane are complicated by several competing rate processes.


2005 ◽  
Vol 83 (6-7) ◽  
pp. 681-692 ◽  
Author(s):  
Wen-Hua Chiou ◽  
Seung-Yub Lee ◽  
Iwao Ojima

This article describes recent advances in the cyclohydrocarbonylation reactions catalyzed by transition-metal complexes and their applications in organic synthesis as a review covering the relevant literature up to the middle of 2004. The reactions are categorized into four types, i.e., intramolecular amidocarbonylation reactions, intramolecular aminocarbonylation reactions, cyclohydrocarbonylation reactions involving carbon–nucleophiles, and other cyclohydrocarbonylation reactions. Cyclohydrocarbonylation reactions provide efficient routes to various monocyclic, bicyclic, and polycyclic compounds as a one-step cascade process or a one-pot process. Reaction mechanisms for these cascade processes are discussed as needed for clarification. The heterocyclic and carbocyclic compounds, thus obtained, can be further transformed to specific targets. Examples of such applications are also discussed.Key words: catalysis, cyclohydrocarbonylation, hydroformylation, amidocarbonylation, cyclization, regioselectivity, aldehydes, regioselective, cascade, heterocycles, rhodium.


RSC Advances ◽  
2020 ◽  
Vol 10 (29) ◽  
pp. 17288-17292 ◽  
Author(s):  
Yiyong Zhao ◽  
Junjie Wei ◽  
Shuting Ge ◽  
Guofu Zhang ◽  
Chengrong Ding

Our gram-scale process uses abundant and inexpensive aldehydes, a clean nitrogen source, requires no additional carbon atoms, is transition-metal free, and features easy work-up and excellent functional group compatibility.


2019 ◽  
Vol 814 ◽  
pp. 76-82 ◽  
Author(s):  
Wen Ming Zhang ◽  
Mu Wei Ji ◽  
Jin Wang

{100}-faceted copper nanostructures with different morphology of nanowires and nanocubes have been prepared by one-pot method. The electroactivity of Cu nanowires and nanocubes was evaluated by degradation of p-nitrophenol. As-prepared copper nanowires exhibit higher catalytic activity for p-nitrophenol degradation than copper nanocubes, and outperform most of Cu catalysts reported in literature. Electrochemical reductive reaction of p-nitrophenol is shown to be kinetically first-order.


1981 ◽  
Vol 59 (21) ◽  
pp. 3034-3038 ◽  
Author(s):  
Kenneth T. Leffek ◽  
Przemyslaw Pruszynski

4-Nitrophenylnitromethane reacts with 2,7-dimethoxy-1,8-bis(dimethylamino)naphthalene in acetonitrile in a bimolecular proton transfer, which shows a primary deuterium isotope effect, kH/kD = 12.2 at 25 °C. The large isotope effect on the enthalpy of activation, (ΔHD≠ – ΔHH≠) = 4.6 ± 0.3 kcal mol−1 is consistent with a significant contribution of proton tunnelling to the reaction rate of the protium substrate.The analogous reaction of 1-(4-nitrophenyl)-1-nitroethane with the same base in acetonitrile gives contrasting kinetics and reaction parameters. The reaction is first order, showing no dependence on base concentration. While the isotope effect kH/kD = 9.3 at 25 °C, the enthalpy of activation difference (ΔHD≠ – ΔHH≠) is only 0.5 ± 0.1 kcal mol−1. It is concluded that the 1-(4-nitrophenyl)-1-nitroethane undergoes a slow dissociation, with a very small dissociation constant, followed by a fast association with the base to yield the carbanion ion-pair.


2018 ◽  
Vol 54 (65) ◽  
pp. 8960-8963 ◽  
Author(s):  
Xingxing Ma ◽  
Shaoyu Mai ◽  
Yao Zhou ◽  
Gui-Juan Cheng ◽  
Qiuling Song

An efficient one-pot cascade process via unprecedented quadruple cleavage of BrCF2COOEt with primary amines to afford valuable fluorine-containing heterocycles is described, in which BrCF2COOEt plays a dual role as a C1 synthon and a difluoroalkylating reagent for the first time.


Sign in / Sign up

Export Citation Format

Share Document