Evaluating hydrodynamics in a bioreactor with liquid phase dispersion in the gas phase

Author(s):  
Arash Arabmarkadeh ◽  
Mohsen Nosrati ◽  
Mohammad Amin Hejazi ◽  
Seyed Mohammad Mousavi

AbstractBioreactors are used in many biochemical industries to produce commercial life products such as medicines, enzymes, perfumes, paints and antibiotics. In the presented study, a specially shaped bioreactor has been designed, built and operated to increase the mass transfer coefficient. The constructed bioreactor, according to type of microorganisms, can provide high amounts of oxygen or carbon dioxide. Moreover, the manuscript was aimed at investigating the hydrodynamic properties of the bioreactor. The bioreactor was constructed from three parts including shower in upper part, middle section for mass transfer and bottom section as a reservoir. Liquid flow rate, shower holes diameter, aeration velocity and the middle part height of the bioreactor have been studied as factors influencing the hydrodynamics. The results showed that the highest mass transfer coefficient was 30.1 1/h which was achieved when the liquid flow rate, the shower holes diameter, aeration velocity and middle part height of the bioreactor were 280 mL/min, 2 mm, 0.03 vvm and 60 cm, respectively.

1986 ◽  
Vol 51 (10) ◽  
pp. 2127-2134 ◽  
Author(s):  
František Potůček ◽  
Jiří Stejskal

Absorption of oxygen into water and aqueous solutions of poly(acrylamides) was studied in an absorber with a wetted sphere. The effects of changes in the liquid flow rate and the polymer concentration on the liquid side mass transfer coefficient were examined. The results are expressed by correlations between dimensionless criteria modified for non-Newtonian liquids whose flow curve can be described by the Ostwald-de Waele model.


Konversi ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Erlinda Ningsih ◽  
Abas Sato ◽  
Mochammad Alfan Nafiuddin ◽  
Wisnu Setyo Putranto

Abstract- One of the most widely used processes for CO2 gas removal is Absorption. Carbon dioxide is the result of the fuel combustion process which of the hazardous gases. The aim of this research is to determine the total mass transfer coefficient and analyze the effect of the absorbent flow rate of the absorbent solution with the promoter and the gas flow rate to the total mass transfer coefficient value. The variables consisted of liquid flow rate: 1, 2, 3, 4, 5 liter/min, gas flow rate: 15, 25, 30, 40, 50 liter/min and MSG concentration: 0%, 1%, 3% and 5% by weight. The solution of Pottasium Carbonate as absorbent with MSG promoter is flowed through top column and CO2 gas flowed from bottom packed column. Liquids were analyzed by titration and the gas output was analyzed by GC. From this research, it is found that the flow rate of gas and the liquid flow rate is directly proportional to the value of KGa. The liquid flow rate variable 5 liters / minute, gas flow rate 15 l / min obtained value of KGa 11,1102 at concentration of MSG 5%. Keywords:  Absorption, CO2,  K2CO3, MSG. 


2003 ◽  
Vol 57 (7-8) ◽  
pp. 330-334
Author(s):  
Srdjan Pejanovic ◽  
Radmila Garic-Grulovic ◽  
Predrag Bozalo

The absorption of carbon dioxide in aqueous diethanolamine solutions was carried out in a three-phase fluidized bed with inert spherical packing. The rate of absorption was calculated on the basis of measuring the concentration change in the liquid phase on-line by a conductivity probe. It was shown that the Danckwerts plot method might be successfully used to simultaneously determine the effective interfacial area and both the gas and liquid-side mass transfer coefficients. While the gas-side mass transfer coefficient is independent of the liquid flow rate, the effective interfacial area and liquid-side mass transfer coefficient increase with increasing liquid flow rate.


2020 ◽  
Vol 13 (2) ◽  
pp. 153-157
Author(s):  
Zahraa N. Abd ◽  
Salih A. Rushdi

Mixtures of different types of amine solution Monoethanolamine, Diethanolamine, and Triethanolamine were experimentally used to investigate the overall mass transfer coefficient (KGa) at different operating parameters. The experiments were made in a packed bed reactor (PBR) with 75 cm in high and10 cm inside diameter as a gas-liquid contactor at 25℃ and atmospheric pressure, using a simulation gaseous mixture (air, carbon dioxide)  with recycle stream (semi-continuous process). Experimental design process Taguchi was employed. Four factors and three levels were chosen and exploded using L9 (3 ^4) orthogonal array design. These parameters for semi-continuous  process were namely: gas flow rate 5,10,and 15 L/min ,airflow rate80,90,and 100 L/h, liquid flow rate 400,450,and 500 mL/min  and time absorption time  30,45,and 60min . A Shimadzu GC-8A Gas Chromatograph with a thermal conductivity detector was used to measure the CO2 concentration absorbed in aqueous blended solution. The maximum value for CO2 loading was 8.622 (mol CO2/mol amine) at 15 L/min gas flow and 450 mL/min liquid flow and 100 L/h airflow for 60 min from absorption time. The results showed that the max value of KGa is 0.048 S-1.


2014 ◽  
Vol 908 ◽  
pp. 277-281
Author(s):  
Fei Wu ◽  
Jie Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Ping Lu

Based on acetone-H2O system, the influence of the gas-liquid distribution inducer on the mass transfer coefficient in the rotating packed bed with the stainless steel packing was investigated. Furthermore, the absorption performance was also obtained under the experimental condition of the rotational speed of 630 rpm, the gas flow rate of 2 m3/h and the liquid flow rate of 100 L/h in the rotating packed bed with different types and different installation ways of the distribution inducer. The experimental results showed that the volumetric mass transfer coefficient Kyα per unit contact length of gas-liquid was increased by 8.6% for the forward-curved fixed blade, by 19.8% for the backward-curved rotor blade and by 33.2% with the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. Furthermore, when the gas flow rate was 2.5 m3/h, Kyα per unit contact length of gas-liquid was increased by 2.9% for the forward-curved fixed blade, by 25.3% for the backward-curved rotor blade, by 42.7% for the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. The results indicated that the distribution inducer play an important role on the improvement of the mass transfer coefficient in acetone-H2O system.


2020 ◽  
Vol 10 (15) ◽  
pp. 5071
Author(s):  
Zuwu Wang ◽  
Guifen Shen

An integrated electromigration membrane absorption method has been proposed for the separation of NO from simulated mixed gas. The experiments were conducted to investigate the effect of discharge voltage, gas flow rate, inlet concentrations, and absorbents on the NO separation efficiency and total mass transfer coefficient in the integrated electromigration membrane reactor. The experimental results demonstrated that the NO separation efficiency and total mass transfer coefficient increased with the increase in the applied discharge voltage of the integrated electromigration membrane reactor. Regardless of discharge or not, the separation efficiency of NO continuously decreased with the increase in the gas flow rate and inlet concentration of NO in the experimental process. The total mass transfer coefficient of NO increased first and then decreased with an increase in the gas flow rate, while it decreased with an increase in NO inlet concentration. Compared with the membrane absorption without discharge voltage under the condition tested, at a discharge voltage of 18kV, the NO separation efficiency and the total mass transfer coefficient increased by 48.7% and 9.7 times, respectively.


EKUILIBIUM ◽  
2011 ◽  
Vol 10 (2) ◽  
Author(s):  
Endang Kwartiningsih ◽  
Arif Jumari

<p><strong><em>Abstract:</em></strong><strong><em> </em></strong><em>Gas purification from the content of H<sub>2</sub>S using  Fe-EDTA (Iron Chelated Solution) gave  several advantages. The advantages were  the absorbent solution can be regenerated that means  a cheap operation cost,  the separated sulfur was a solid that is easy to handle and is save to be disposal to environment. This research was done by simulation and experimental. The simulation step was done by mathematical model arrangement representing the absorption process in packed column through mass transfer arrangement such as mass transfer equations and chemical reaction. The experimental step was done with the making of Fe-EDTA solution from FeCl<sub>2</sub> and EDTA. Then Fe-EDTA solution was flown in counter current packed column that was contacted with H<sub>2</sub>S in the methane gas. By comparing gas composition result of experiment and simulation, the value of mass transfer coefficient in gas phase ( k<sub>Ag</sub>a), mass transfer coefficient in liquid phase (k<sub>Al</sub>a) and the reaction rate constant ( k) were found. The values of mass transfer coefficient in liquid phase (k<sub>Al</sub>a) were lower than values of mass transfer coefficient in gas phase (k<sub>Ag</sub>a) and the reaction rate constant (k). It meant that H<sub>2</sub>S absorption  process using Fe-EDTA absorbent solution was determined by mass transfer process in liquid phase. The higher flow rate of absorbent, the higher value of mass transfer coefficient in liquid phase. </em><em>The smaller packing diameter, the higher value of mass transfer coefficient in liquid phase.From analysis of dimension, the relation of dimensionless number between Sherwood number and flow rate of absorbent, packing diameter was</em><strong></strong></p><p> <strong><em>Keywords:</em></strong><strong><em> </em></strong><em>chemical reaction, Fe-EDTA, H<sub>2</sub>S absorption, mass transfer</em></p>


1989 ◽  
Vol 8 (2) ◽  
pp. 63-68
Author(s):  
A. J. Rautenbach ◽  
G. Kornelius

Spray columns are widely used in industry as a gas-liquid contacting apparatus because of the advantages of a high transfer area per unit volume and the tow gas side resistance. For a large number of systems, mass transfer parameters are not available and an experimental determination for the system benzene/wash oil was therefore carried out. The experimental technique and design are described. The variation in mass transfer coefficient as function of gas flow rate, liquid flow rate and column height agrees with those published elsewhere.


2020 ◽  
Vol 13 (1) ◽  
pp. 67-73
Author(s):  
Elaf Thamera ◽  
Salih Abduljabbar Rushdi

In this work, an absorption technology   was used actually to investigation the  mass transfer coefficient of carbon dioxide from a gaseous mixture (air, carbon dioxide) in  blended solution Monoethanolamine (MEA) and Diethanolamine (DEA)  in a bubble column reactor (BCR) . The bubble column reactor(BCR) was made of Plexiglas with 1.5 m high and 0.1 m inside diameter. The overall mass transfer coefficient (  was evaluated at different operating conditions , gas flow rate, air Flow rate ,liquid flow rate .Where the gas flow rates were 10, 15 and 20 L /min ,  air flow rate 100,150 and 200 L/h ,and liquid flow rate 5 ,10,15 L /min . This experiment  by   using  continuous   process with helping centrifugal  pump  . High-performance gas chromatographic (GC) was performed to evaluate  loading during absorption experiment . The  experimental results have shown that the   loading in range of  0.581-1.367 (mol  /mole amine),and the maximum value of overall mass transfer coefficient ( KG) was 0.04 S-1 .


Sign in / Sign up

Export Citation Format

Share Document