Dynamics of dust particles in a conducting water-based kerosene nanomaterials: a computational approach

Author(s):  
Santosh Kumar Parida ◽  
Satyaranjan Mishra ◽  
Rishi Kanta Dash ◽  
Pradyumna Kumar Pattnaik ◽  
Muhammad Ijaz Khan ◽  
...  

Abstract The magnetohydrodynamic nanofluid flow comprised of dust particles is carried out in the current investigation. The role of dust nanoparticles on the flow characteristics is vital. The radiative heat phenomena for the interaction of Cu nanoparticle are deliberated in this discussion. However, both water and oil (kerosene) are treated as conventional fluids. Regarding the current applications on nanofluid in industries for the production of several materials, it is important to use the nanoparticles as a coolant. In recent applications, for the CPU cooler Cu-nanoparticle is used because of its high thermal conductivity and as a good conductor of heat. The governing flow characteristics involved with nonlinear properties of partial differential equations are transformed into ordinary differential equations using suitable similarity variables. Further, numerical treatment is imposed using the in-build Matlab code bvp5c. The imitation is carried out for the various profiles using physical parameters and presented graphically. The numerical values for the rate coefficients are presented via tables and deliberated briefly.

2018 ◽  
Vol 28 (6) ◽  
pp. 1374-1391 ◽  
Author(s):  
Rohana Abdul Hamid ◽  
Roslinda Nazar ◽  
Ioan Pop

Purpose This present aims to present the numerical study of the unsteady stretching/shrinking flow of a fluid-particle suspension in the presence of the constant suction and dust particle slip on the surface. Design/methodology/approach The governing partial differential equations for the two phases flows of the fluid and the dust particles are reduced to the pertinent ordinary differential equations using a similarity transformation. The numerical results are obtained using the bvp4c function in the Matlab software. Findings The results revealed that in the decelerating shrinking flow, the wall skin friction is higher in the dusty fluid when compared to the clean fluid. In addition, the effect of the fluid-particle interaction parameter to the fluid-phase can be seen more clearly in the shrinking flow. Other non-dimensional physical parameters such as the unsteadiness parameter, the mass suction parameter, the viscosity ratio parameter, the particle slip parameter and the particle loading parameter are also considered and presented in figures. Further, the second solution is discovered in this problem and the solution expanded with higher unsteadiness and suction values. Hence, the stability analysis is performed, and it is confirmed that the second solution is unstable. Practical implications In practice, the flow conditions are commonly varying with time; thus, the study of the unsteady flow is very crucial and useful. The problem of unsteady flow of a dusty fluid has a wide range of possible applications such as in the centrifugal separation of particles, sedimentation and underground disposable of radioactive waste materials. Originality/value Even though the problem of dusty fluid has been broadly investigated, limited discoveries can be found over an unsteady shrinking flow. Indeed, this paper managed to obtain the second (dual) solutions, and stability analysis is performed. Furthermore, the authors also considered the artificial particle-phase viscosity, which is an important term to study the particle-particle and particle-wall interactions. With the addition of this term, the effects of the particle slip and suction parameters can be investigated. Very few studies in the dusty fluid embedded this parameter in their problems.


2021 ◽  
Vol 12 (4) ◽  
pp. 5161-5173

In this study, we investigate the effect of variable fluid properties such as variable viscosity, porosity, permeability, thermal conductivity, and solutal diffusivity on double-diffusive mixed convective flow over an accelerating surface under the influence of a higher-order chemical reaction. The governing equations of the physical problem involve a coupled nonlinear partial differential equations and which are transformed into a coupled nonlinear ordinary differential equations using a suitable similarity transformation. Numerical computation using shooting technique is adopted to study the physical characteristics of velocity, temperature and concentration for various values of non-dimensional parameters like Prandtl number, Eckert number, buoyancy parameters, viscosity parameter, porous parameter, a ratio of thermal conductivities, a ratio of solutal diffusivities and chemical reaction parameter etc are involved in the problem. The computed numerical results are presented in the graphs to illustrate the details of the flow characteristics and their dependence on physical parameters. Our computed results are compared with earlier works of Seddeek in the absence of a magnetic field and found in good agreement.


2018 ◽  
Vol 387 ◽  
pp. 625-639 ◽  
Author(s):  
B. Mahanthesh ◽  
Oluwole Daniel Makinde ◽  
Bijjanal Jayanna Gireesha ◽  
Koneri L. Krupalakshmi ◽  
Isaac Lare Animasaun

This article addresses the boundary layer flow and heat transfer in Casson fluid submerged with dust particles over three different geometries (vertical cone, wedge and plate). The aspects of Cattaneo-Christov heat flux and exponential space-based heat source (ESHS) are also accounted. At first, the partial differential equations are transformed into a set of ordinary differential equations via appropriate similarity transformations. Resulting equations are solved via shooting method coupled with the Runge-Kutta-Fehlberg-45 integration scheme. The consequences of dimensionless parameters on velocity and temperature fields of both fluid and dust particles phase are analyzed. The rate of increment/decrement in the skin friction as well as the Nusselt number for various values of physical parameters are also estimated via slope of linear regression line using data points.


2018 ◽  
Vol 96 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. Bilal ◽  
M. Sagheer ◽  
S. Hussain

In this study, three-dimensional upper-convected Maxwell fluid flow over a stretching surface in the presence of viscous dissipation and Joule heating is considered to examine the effects of thermophoresis and magnetohydrodynamics (MHD) on heat and mass transfer. Energy equation is formulated under the assumption of nonlinear radiative heat flux. Ordinary differential equations are deduced from the governing partial differential equations with the help of similarity transformation. These equations are then solved numerically using the shooting method, through the fourth-order Runge–Kutta integration procedure. To strengthen the reliability of our results, the MATLAB built-in function bvp4c is also used. Effects of some prominent physical parameters, such as Eckert number, Prandtl number, thermophoretic parameter, and magnetic parameter on the velocity, temperature, and concentration profiles are discussed graphically and numerically. It is found that concentration profile decreases for the higher values of thermophoretic parameter and Schmidt number. The heat flux rate is observed to enhance for increasing values of thermal radiation and Prandtl number.


2017 ◽  
Vol 11 ◽  
pp. 84-98 ◽  
Author(s):  
Poojari Borappa Sampath Kumar ◽  
Bijjanal Jayanna Gireesha ◽  
Basavarajappa Mahanthesh ◽  
Rama Subba Reddy Gorla

Nonlinear thermal convection in heat and mass transfer mechanism of dissipating Jeffrey liquid is investigated. The impact of cross diffusion and convective conditions are also accounted. Before integrating pertinent partial differential equations; a set similarity variables are employed to reduce them into multidegree ordinary differential equations. The validation process comprised a comparison with existing data, reaching an excellent agreement. Later, the influence of distinct physical parameters on diverse flow characteristics are comprehensively discussed and analyzed. It is established that the nonlinear convection is favourable for the escalation of the thickness of momentum boundary layer. Further, the convective conditions are used as controlling constraints.


Author(s):  
A. Agarkov ◽  
R. Sharapov

Various designs of inertial concentrators for cleaning dusty air are considered. The analyzed designs of devices for separating dust particles by fractions also have a number of disadvantages: low fractional efficiency and complexity of structures when divided into several fractions. The design of an inertial dust concentrator with adjustable parameters is proposed. This design of the concentrator provides an increase in fractional efficiency and a decrease in hydraulic resistance with the simplicity of the apparatus design. Three-dimensional modeling of the spatial motion of air in an inertial dust concentrator with adjustable parameters is performed. A system of equations describing gas-dynamic flows is given. The results of calculations of velocity and pressure in an inertial dust concentrator with adjustable parameters are presented. Reflecting vanes and a false wall inside an inertial concentrator act as deflectors, that is, deflect the flow, which leads to an increase in the time spent by suspended particles in the inertial concentrator and a decrease in their kinetic energy. In this case, the role of inertia forces on the motion of particles will increase. Numerical modeling of the three-dimensional air flow in the concentrator made it possible to obtain a flow pattern and the main flow characteristics (velocity and pressure) from the moment of air supply to the concentrator to the moment of establishing the flow.


Author(s):  
Swati Mohanty ◽  
Banani Mohanty ◽  
Satyaranjan Mishra

The proposed mathematical model is based upon the peristaltic flow of an electrical conducting nanofluid within an asymmetric microchannel. The flow takes place under the action of dissipative heat energy due to the occurrence of the magnetic field that is basically known as Joule heating and radiative heat proposed as thermal radiation along with the additional heat source. Moreover, the impact of upper/lower wall zeta potential and the expression for the electric potential is presented using the Poisson Boltzmann equation and Debey length approximation. The well-known numerical practice is used for distorted governing equations with appropriate boundary conditions. Further, computation of the pressure gradient is obtained for the associated physical parameters. The graphical illustration shows the characteristics of the pertinent parameters on the flow problem and the tabular result represents the simulated values for the rate coefficients. In the significant examination, the study reveals that the mobility parameter due to the occurrence of the electric field vis-à-vis time parameter encourages the velocity distribution within the center of the channel furthermore significant retardation occurs near the wall region.


2016 ◽  
Vol 11 (2) ◽  
pp. 150-155
Author(s):  
R. Troian ◽  
D. Dragna ◽  
C. Bailly ◽  
M.-A. Galland

Modeling of acoustic propagation in a duct with absorbing treatment is considered. The surface impedance of the treatment is sought in the form of a rational fraction. The numerical model is based on a resolution of the linearized Euler equations by finite difference time domain for the calculation of the acoustic propagation under a grazing flow. Sensitivity analysis of the considered numerical model is performed. The uncertainty of the physical parameters is taken into account to determine the most influential input parameters. The robustness of the solution vis-a-vis changes of the flow characteristics and the propagation medium is studied.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 694 ◽  
Author(s):  
Ellora Padhi ◽  
Subhasish Dey ◽  
Venkappayya R. Desai ◽  
Nadia Penna ◽  
Roberto Gaudio

In a natural gravel-bed stream, the bed that has an organized roughness structure created by the streamflow is called the water-worked gravel bed (WGB). Such a bed is entirely different from that created in a laboratory by depositing and spreading gravels in the experimental flume, called the screeded gravel bed (SGB). In this paper, a review on the state-of-the-art research on WGBs is presented, highlighting the role of water-work in determining the bed topographical structures and the turbulence characteristics in the flow. In doing so, various methods used to analyze the bed topographical structures are described. Besides, the effects of the water-work on the turbulent flow characteristics, such as streamwise velocity, Reynolds and form-induced stresses, conditional turbulent events and secondary currents in WGBs are discussed. Further, the results form WGBs and SGBs are compared critically. The comparative study infers that a WGB exhibits a higher roughness than an SGB. Consequently, the former has a higher magnitude of turbulence parameters than the latter. Finally, as a future scope of research, laboratory experiments should be conducted in WGBs rather than in SGBs to have an appropriate representation of the flow field close to a natural stream.


Sign in / Sign up

Export Citation Format

Share Document