scholarly journals A Study on the Power Reserve of Distributed Generators Based on Power Sensitivity Analysis in a Large-Scale Power System

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 769
Author(s):  
Dongmin Kim ◽  
Jung-Wook Park ◽  
Soo Hyoung Lee

Converter-based generators (CBGs) that use renewable energy sources (RESs) are replacing traditional aging coal and nuclear power generators. Increasing the penetration of CBGs into the entire power generation process reduces both the inertia constant of the power system and the total amount of power reserves. Additionally, RESs are very intermittent and it is difficult to predict changes in them. These problems, due to CBGs using RESs, pose new challenges to net–load balancing. As a solution, this paper proposes a virtual multi-slack (VMS) droop control that secures the stability and efficiency of system operation by controlling the output of CBGs distributed in various regions. The VMS droop control makes it possible to increase the inertia constant of the power system and to respond quickly and appropriately to load changes through the proposed VMS droop control based on power sensitivity. It is also proposed that the process selects proper power reserves of CBGs for stable VMS droop control. To verify the effectiveness of the proposed VMS droop control and the proper power reserve selection method for CBGs, several case studies were performed using a real Korean power system.

Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy stor- age systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic model for stability analysis. Moreover, a proper control design for the power system is a complicated issue due to its complexity and inter-connectivity. Thus, the application of decentralized control to improve the stability of a large- scale power system is inevitable, especially in distributed energy sources (DERs). This paper presents an optimal distributed hybrid control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The results show that i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; ii) the hybrid model of the battery is more user-friendly compared to the Western electricity coordinating council (WECC) model in power system analysis.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5605
Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy storage systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic models and their application in power system analyses. The control design strategy mainly depends on the system dynamics which underlines the importance of the system accurate dynamic modeling. Moreover, control design for the power system is a complicated issue due to its complexity and inter-connectivity, which makes the application of distributed control to improve the stability of a large-scale power system inevitable. This paper presents an optimal distributed control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The control strategy is applied to two dynamic models of the battery: hybrid model and Western electricity coordinating council (WECC) model. The results show that (i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; (ii) the hybrid model of the battery is more user-friendly compared to the WECC model in power system analyses.


2022 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Sajid Ali Murtaza ◽  
Nazam Siddique ◽  
Javaid Aslam ◽  
Waqas Latif ◽  
Muhammad Wasif ◽  
...  

The AC power system is leading due to its established standards. The depleting thread of fossil fuels, the significant increase in cost and the alarming environmental situation raises concerns. An Islanded DC microgrid, due to its novel characteristics of being able to withstand faulty conditions, has increased the reliability, accuracy, ease of integration, and efficiency of the power system. Renewable energy sources, characteristically DC, have wide usability in a distributive network and, accordingly, less circuitry and conversion stages are required, eliminating the need of reactive power compensation and frequency sync. Constant power loads (CPLs) are the reason for instability in the DC microgrid. Various centralized stability techniques have been proposed in the literature; however, the grid system collapses if there is a fault. To compensate, an efficient distributive control architecture, i.e., droop control method is proposed in this research. The significant advantage of using the droop control technique includes easy implementation, high reliability and flexibility, a reduced circulating current, a decentralized control with local measurements, the absence of a communication link and, thus, it is economic. Moreover, it offers local control for each individual power source in the microgrid. To investigate the stability of the islanded DC microgrid with constant power loads using the droop control technique, a small signal model of the islanded DC microgrid was developed in MATLAB/Simulink. Simulations were carried out to show the efficiency of the proposed controller and analyze the stability of the power system with constant power loads.


Author(s):  
Igor Razzhivin ◽  
Aleksey Suvorov ◽  
Mikhail Andreev ◽  
Alisher Askarov

Abstract The dominant trend of the modern energy is the use of generating plants based on renewable energy sources, among which the most common is a wind power plant based on doubly fed induction generator (Type 3 WT). The large-scale introduction of Type 3 WT into the modern power systems significantly changes their dynamic properties. There are problems with ensuring the basic condition of the reliability and the survivability of power systems – the stability. The study and solution of the indicated problems is possible only with the help of the mathematical modeling of a large-scale power systems which is currently being carried out with the help of widespread purely numerical software tools of calculations of modes and processes, which are characterized by various simplifications and limitations. For the properties and capabilities of software tools for studying stability issues, mathematical models of Type 3 WT, the so-called generic models, which also have simplifications and limitations, are adapted. In this article, the reliability of stability calculations of a real power system with Type 3 WT using software tools was evaluated, which allows to identify the influence of the applied simplifications and restrictions with a purely numerical approach on the quality of solving problems of assessing the stability of power systems with Type 3 WT. Also, the studies made it possible to identify the areas of the application of generic models of Type 3 WT as a part of the model of the real dimension power system, at which the greatest and least errors arise, as well as their causes. Such a comprehensive assessment becomes feasible due to the alternative approach proposed in the article, based on the use of a detail benchmark tool model instead of the full-scale data to compare the results of modeling.


2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1996 ◽  
Author(s):  
G. V. Brahmendra Kumar ◽  
Ratnam Kamala Sarojini ◽  
K. Palanisamy ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen

In recent years, many applications have been developed for the integration of renewable energy sources (RES) into the grid in order to satisfy the demand requirement of a clean and reliable electricity generation. Increasing the number of RES creates uncertainty in load and power supply generation, which also presents an additional strain on the system. These uncertainties will affect the voltage and frequency variation, stability, protection, and safety issues at fault levels. RES present non-linear characteristics, which requires effective coordination control methods. This paper presents the stability issues and solutions associated with the integration of RES within the grid.


2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


2021 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Masood Ibni Nazir ◽  
Ikhlaq Hussain ◽  
Aijaz Ahmad ◽  
Irfan Khan ◽  
Ayan Mallik

The world today is plagued with problems of increased transmission and distribution (T&D) losses leading to poor reliability due to power outages and an increase in the expenditure on electrical infrastructure. To address these concerns, technology has evolved to enable the integration of renewable energy sources (RESs) like solar, wind, diesel and biomass energy into small scale self-governing power system zones which are known as micro-grids (MGs). A de-centralised approach for modern power grid systems has led to an increased focus on distributed energy resources and demand response. MGs act as complete power system units albeit on a small scale. However, this does not prevent them from large operational sophistication allowing their independent functioning in both grid-connected and stand-alone modes. MGs provide greater reliability as compared to the entire system owing to the large amount of information secured from the bulk system. They comprise numerous sources like solar, wind, diesel along with storage devices and converters. Several modeling schemes have been devised to reduce the handling burden of large scale systems. This paper gives a detailed review of MGs and their architecture, state space representation of wind energy conversion systems & solar photovoltaic (PV) systems, operating modes and power management in a MG and its impact on a distribution network.


2019 ◽  
Vol 116 ◽  
pp. 00042
Author(s):  
Małgorzata Kwestarz ◽  
Maciej Chaczykowski

The power systems in European Union operate under energy policies where the greenhouse gases reduction, the increase of the share of renewable energy sources (RES) and the improvements in energy efficiency are the main objectives. Polish energy sector is currently based on inefficient usage of coal and must be transformed according to the requirements of EU energy and climate policy. A policy framework for climate and energy in the period from 2020 to 2030 established the target of 27% of share of RES in energy consumption. With the continuing increase in the use of RES, it is likely that more and more generation will have to be curtailed to maintain the stability of the power system which was not originally designed to integrate renewable generation. In this context, the conversion of renewable electricity to heat in connection with its storage in district heating systems, known as Power-to-Heat (PtH) can be considered as a viable option in increasing the share of RES and facilitating the stability of the power system. In this paper an attempt is made to estimate the potential of PtH technology for Poland up to 2030, including the high RES share scenario for the energy mix development.


Sign in / Sign up

Export Citation Format

Share Document