Effects of High-Pressure Homogenization at Different Pressures on Structure and Functional Properties of Oyster Protein Isolates

Author(s):  
Cuiping Yu ◽  
Fan Wu ◽  
Yue Cha ◽  
Yuting Qin ◽  
Ming Du

Abstract Oyster protein isolate (OPI) suspensions (6.19 % ± 0.82 %, w/v) were treated by high-pressure homogenization (HPH) at 0 (control), 20, 40, 60, 80 or 100 MPa for three cycles. Protein profiles, secondary structure, free sulfhydryl, surface hydrophobicity, particle size distribution, zeta-potential, solubility, water and oil holding capacity (OHC), emulsifying and foaming properties of the obtained suspensions were analyzed. The results showed that HPH treatment did not cause changes in protein profiles of OPI, but caused changes in secondary structure, content of α-helix decreased but content of β-turn and random coil increased significantly (P < 0.05). Free sulfhydryl and surface hydrophobicity all increased significantly (P < 0.05) after HPH treatment, indicating that tertiary and quaternary structures changed. Functional properties of OPI significantly (P < 0.05) improved after HPH treatment, such as zeta-potential (from −12.67 to −33.57 mV), solubility (from 20.24 % to 57.99 %), OHC (from 981.77 % to 1229.40 %), foaming ability (from 17.50 % to 35.00 %), foaming stability (from 44.49 % to 66.60 %), emulsifying activity index (from 8.87 to 17.06 m2/g) and emulsion stability index (from 14.65 to 41.68 min). At 60 MPa and 80 MPa, the improvements were more remarkable. However, HPH treatment significantly (P < 0.05) decreased particle size (from 200–500 nm to 0–200 nm) and water holding capacity (from 341.15 % to 216.96 %). These improvements were closely related to structural changes and reduction of particle size. Application of different pressures affected functional properties of OPI. These results could provide information for determining HPH applying condition in OPI modification.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3344 ◽  
Author(s):  
Yue Cha ◽  
Fan Wu ◽  
Henan Zou ◽  
Xiaojie Shi ◽  
Yidi Zhao ◽  
...  

The effects of HPH (high-pressure homogenization) pre-treatment on the functional properties of OPIH (oyster protein isolates hydrolysates) were studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles, solubility, particle size distribution, zeta potential, surface hydrophobicity, emulsifying activity index and microstructure of emulsions were analyzed. Results indicated that HPH pre-treatment increased the accessibility of OPI to trypsin hydrolysis, resulting in decease in particle size, increase in solubility, absolute zeta potential, surface hydrophobicity and emulsifying activity index. In addition, HPH pre-treated OPIH emulsions became more uniform and the particle size of droplets decreased. These results revealed that HPH pre-treatment has the potential to modify the functional properties of OPIH.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2618 ◽  
Author(s):  
Xiaotong Sun ◽  
Hua Jin ◽  
Yangyang Li ◽  
Haiying Feng ◽  
Chunhong Liu ◽  
...  

This study aimed to investigate the variation of molecular functional properties of peanut protein isolate (PPI) over the storage process and reveal the correlation between the PPI secondary structure and properties in the storage procedure. After storage, the molecular properties of PPI changed significantly (p < 0.05). Extending storage time resulted in a decrease in free sulfhydryl content, fluorescence intensity, surface hydrophobicity and emulsifying properties, which was accompanied by an increase in protein particle size. The results of infrared spectroscopy suggested the content decline of α-helix and β-sheet, and the content rise of β-turn and random coil. Based on bivariate correlation analysis, it was revealed that surface hydrophobicity and emulsifying activity of PPI was significantly affected by α-helix and by β-turn (p < 0.05), respectively. This research supplied more information for the relationship between the peanut protein’s secondary structure and functional properties over the stored process.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dianbin Su ◽  
Xin-Di Zhu ◽  
Yong Wang ◽  
Dong Li ◽  
Li-Jun Wang

Abstract Citrus fiber dispersion with different concentrations (5–25 g/kg) was treated by high-pressure homogenization (90 and 160 MPa) for two cycles. The particle size distribution, hydration properties of powders, morphology and rheological measurements were carried out to study the microstructure and rheological properties changes by high-pressure homogenization (HPH). In conclusion, the HPH can reduce the particle size of fiber, improve the water holding capacity and water binding capacity. Furthermore, fiber shape can be modified from globular cluster to flake-like slices, and tiny pores can be formed on the surface of citrus fiber. The apparent viscosity, storage modulus and loss modulus were increased by HPH whereas the activation energy was reduced. The Hershcel–Bulkley model, Carreau model and Power Law mode were selected to evaluate the rheological properties.


LWT ◽  
2021 ◽  
pp. 112107
Author(s):  
Zhaofang Liu ◽  
Zixuan Guo ◽  
Di Wu ◽  
Xu Fei ◽  
Hesham R. Ei-Seedi ◽  
...  

2016 ◽  
Vol 33 (No. 5) ◽  
pp. 474-479 ◽  
Author(s):  
J. Ren ◽  
Ch. Song ◽  
P. Wang ◽  
S. Li ◽  
N. Kopparapu ◽  
...  

The structural and functional properties such as solubility, emulsifying properties, foaming properties, oil binding capacity, and surface hydrophobicity of sunflower 11S globulin hydrolysates generated by Alcalase at hydrolysis time of 30, 60, 90, and 120 min were evaluated. Circular dichroism analysis showed the hydrolysates possessed a decreased α-helix and β-structure. The hydrolysates exhibited lower surface hydrophobicity. Hydrolysates with shorter hydrolysis time showed the higher emulsifying activity index, but the same emulsion stability and oil binding capacity compared to the original 11S globulin. The longer hydrolysis resulted in lower foaming and emulsion stability. Thus it was demonstrated that by controlling the hydrolysis time of sunflower 11S globulin, hydrolysate with a desirable functional properties can be obtained.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 599 ◽  
Author(s):  
Sara Cunha ◽  
Cláudia Pina Costa ◽  
Joana A. Loureiro ◽  
Jorge Alves ◽  
Andreia F. Peixoto ◽  
...  

Rivastigmine is a drug commonly used in the management of Alzheimer’s disease that shows bioavailability problems. To overcome this, the use of nanosystems, such as nanostructured lipid carriers (NLC), administered through alternative routes seems promising. In this work, we performed a double optimization of a rivastigmine-loaded NLC formulation for direct drug delivery from the nose to the brain using the quality by design (QbD) approach, whereby the quality target product profile (QTPP) was the requisite for nose to brain delivery. The experiments started with the optimization of the formulation variables (or critical material attributes—CMAs) using a central composite design. The rivastigmine-loaded NLC formulations with the best critical quality attributes (CQAs) of particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE) were selected for the second optimization, which was related to the production methods (ultrasound technique and high-pressure homogenization). The most suitable instrumental parameters for the production of NLC were analyzed through a Box–Behnken design, with the same CQAs being evaluated for the first optimization. For the second part of the optimization studies, were selected two rivastigmine-loaded NLC formulations: one produced by ultrasound technique and the other by the high-pressure homogenization (HPH) method. Afterwards, the pH and osmolarity of these formulations were adjusted to the physiological nasal mucosa values and in vitro drug release studies were performed. The results of the first part of the optimization showed that the most adequate ratios of lipids and surfactants were 7.49:1.94 and 4.5:0.5 (%, w/w), respectively. From the second part of the optimization, the results for the particle size, PDI, ZP, and EE of the rivastigmine-loaded NLC formulations produced by ultrasound technique and HPH method were, respectively, 114.0 ± 1.9 nm and 109.0 ± 0.9 nm; 0.221 ± 0.003 and 0.196 ± 0.007; −30.6 ± 0.3 mV and −30.5 ± 0.3 mV; 97.0 ± 0.5% and 97.2 ± 0.3%. Herein, the HPH was selected as the most suitable production method, although the ultrasound technique has also shown effectiveness. In addition, no significant changes in CQAs were observed after 90 days of storage of the formulations at different temperatures. In vitro studies showed that the release of rivastigmine followed a non-Fickian mechanism, with an initial fast drug release followed by a prolonged release over 48 h. This study has optimized a rivastigmine-loaded NLC formulation produced by the HPH method for nose-to-brain delivery of rivastigmine. The next step is for in vitro and in vivo experiments to demonstrate preclinical efficacy and safety. QbD was demonstrated to be a useful approach for the optimization of NLC formulations for which specific physicochemical requisites can be identified.


2018 ◽  
Vol 14 (2) ◽  
pp. 143-147 ◽  
Author(s):  
Seitaro Kamiya ◽  
Maya Yamada ◽  
Miki Washino ◽  
Kenichiro Nakashima

Description: Design methods of nanoparticle formulations are divided into break-down methods and build-up methods. The former is further divided into dry and wet processes. For drug nanoparticle preparations, the wet process is generally employed, and organic solvents are used in most formulations. Method: In this study, we investigate the preparation of nifedipine (IB) and griseofulvin (GF) nanoparticles without using organic solvent. Both IB and GF nanoparticles, with a mean particle size of approximately 50 nm, were prepared without organic solvent by employing a combination of roll milling and high-pressure homogenization. Result: The X-ray diffraction peak of the IB and GF samples prepared by roll milling was present at a position (2θ) identical to that of IB and GF crystals, indicating that no peak shift was induced by interaction with phospholipids. Conclusion: These findings demonstrate that most IB and GF nanoparticles exist as crystals in phospholipids.


Sign in / Sign up

Export Citation Format

Share Document