Development of Novel Electronic Nose Applied for Strawberry Freshness Detection during Storage

2018 ◽  
Vol 14 (7-8) ◽  
Author(s):  
Mengke Xing ◽  
Ke Sun ◽  
Qiang Liu ◽  
Leiqing Pan ◽  
Kang Tu

AbstractA newly self-developed electronic nose (E-nose) system for the detection of “Hongyan” strawberry freshness at different storage periods was studied. The system consisted of six metal oxide semiconductor sensors connected to a data acquisition system and a computer with pattern recognition software. The aroma emitted by “Hongyan” strawberry samples was detected during post-harvesting storage, and stable E-nose response values were used to develop cluster analysis and classification models. The successive projections algorithm was employed to optimize the sensors array, and the results obtained by gas chromatography–mass spectrometry analysis proved that the optimized sensor array was feasible to differentiate decayed strawberries from fresh ones. Partial least squares discriminant analysis and support vector machine (SVM) models were built. Accuracy of 94.9 % on the testing set was obtained based on the optimized sensor array, and this result was satisfactory compared to that of commercial PEN3 E-nose.

Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 142
Author(s):  
Mansour Rasekh ◽  
Hamed Karami ◽  
Alphus Dan Wilson ◽  
Marek Gancarz

The frequent occurrence of adulterated or counterfeit plant products sold in worldwide commercial markets has created the necessity to validate the authenticity of natural plant-derived palatable products, based on product-label composition, to certify pricing values and for regulatory quality control (QC). The necessity to confirm product authenticity before marketing has required the need for rapid-sensing, electronic devices capable of quickly evaluating plant product quality by easily measurable volatile (aroma) emissions. An experimental MAU-9 electronic nose (e-nose) system, containing a sensor array with 9 metal oxide semiconductor (MOS) gas sensors, was developed with capabilities to quickly identify and classify volatile essential oils derived from fruit and herbal edible-plant sources. The e-nose instrument was tested for efficacy to discriminate between different volatile essential oils present in gaseous emissions from purified sources of these natural food products. Several chemometric data-analysis methods, including pattern recognition algorithms, principal component analysis (PCA), and support vector machine (SVM) were utilized and compared. The classification accuracy of essential oils using PCA, LDA and QDA, and SVM methods was at or near 100%. The MAU-9 e-nose effectively distinguished between different purified essential oil aromas from herbal and fruit plant sources, based on unique e-nose sensor array responses to distinct, essential-oil specific mixtures of volatile organic compounds (VOCs).


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Tang ◽  
Dan Lei ◽  
Min Wu ◽  
Qiong Hu ◽  
Qing Zhang

Abstract Fenvalerate is a pyrethroid insecticide with rapid action, strong targeting, broad spectrum, and high efficiency. However, continued use of fenvalerate has resulted in its widespread presence as a pollutant in surface streams and soils, causing serious environmental pollution. Pesticide residues in the soil are closely related to food safety, yet little is known regarding the kinetics and metabolic behaviors of fenvalerate. In this study, a fenvalerate-degrading microbial strain, CD-9, isolated from factory sludge, was identified as Citrobacter freundii based on morphological, physio-biochemical, and 16S rRNA sequence analysis. Response surface methodology analysis showed that the optimum conditions for fenvalerate degradation by CD-9 were pH 6.3, substrate concentration 77 mg/L, and inoculum amount 6% (v/v). Under these conditions, approximately 88% of fenvalerate present was degraded within 72 h of culture. Based on high-performance liquid chromatography and gas chromatography-mass spectrometry analysis, ten metabolites were confirmed after the degradation of fenvalerate by strain CD-9. Among them, o-phthalaldehyde is a new metabolite for fenvalerate degradation. Based on the identified metabolites, a possible degradation pathway of fenvalerate by C. freundii CD-9 was proposed. Furthermore, the enzyme localization method was used to study CD-9 bacteria and determine that its degrading enzyme is an intracellular enzyme. The degradation rate of fenvalerate by a crude enzyme solution for over 30 min was 73.87%. These results showed that strain CD-9 may be a suitable organism to eliminate environmental pollution by pyrethroid insecticides and provide a future reference for the preparation of microbial degradation agents and environmental remediation.


2021 ◽  
pp. 030098582110021
Author(s):  
Yuta Takaichi ◽  
James K. Chambers ◽  
Moeko Shiroma-Kohyama ◽  
Makoto Haritani ◽  
Yumi Une ◽  
...  

Canavan disease is an autosomal recessive leukodystrophy caused by mutations in the gene encoding aspartoacylase (ASPA), which hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. A similar feline neurodegenerative disease associated with a mutation in the ASPA gene is reported herein. Comprehensive clinical, genetic, and pathological analyses were performed on 4 affected cats. Gait disturbance and head tremors initially appeared at 1 to 19 months of age. These cats eventually exhibited dysstasia and seizures and died at 7 to 53 months of age. Magnetic resonance imaging of the brain revealed diffuse symmetrical intensity change of the cerebral cortex, brainstem, and cerebellum. Gas chromatography–mass spectrometry analysis of urine showed significant excretion of NAA. Genetic analysis of the 4 affected cats identified a missense mutation (c.859G>C) in exon 6 of the ASPA gene, which was not detected in 4 neurologically intact cats examined as controls. Postmortem analysis revealed vacuolar changes predominantly distributed in the gray matter of the cerebrum and brain stem as well as in the cerebellar Purkinje cell layer. Immunohistochemically, these vacuoles were surrounded by neurofilaments and sometimes contained MBP- and Olig2-positive cells. Ultrastructurally, a large number of intracytoplasmic vacuoles containing mitochondria and electron-dense granules were detected in the cerebral cortex. All 4 cats were diagnosed as spongy encephalopathy with a mutation in the ASPA gene, a syndrome analogous to human Canavan disease. The histopathological findings suggest that feline ASPA deficiency induces intracytoplasmic edema in neurons and oligodendrocytes, resulting in spongy degeneration of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document