Numerical and Experimental Investigation of Nonlinear Shallow Water Sloshing

Author(s):  
Benjamin Bouscasse ◽  
Matteo Antuono ◽  
Andrea Colagrossi ◽  
Claudio Lugni

AbstractA numerical and experimental analysis of sloshing phenomena (i.e. violent fluid motions inside a tank) has been conducted in shallow water regimes. A narrow tank has been used to limit three-dimensional effects and allow for an extensive study of two-dimensional waves. A large range of experimental data from small to large amplitude sway motions has been considered for five different filling heights. The numerical simulations have been performed to cover the configurations where no experiments were available and provide an exhaustive description of the shallow-water sloshing motion. Specifically, the numerical simulations have been performed through a

Author(s):  
Benjamin Bouscasse ◽  
Andrea Colagrossi ◽  
Matteo Antuono ◽  
Claudio Lugni

A numerical and experimental analysis of sloshing phenomena (i.e. violent fluid motions inside a tank) has been conducted in shallow water regimes. A large range of experimental data from moderate to large amplitude sway motions has been considered for different filling heights. The numerical simulations, performed through a δ-SPH model, aim to cover the configurations where no experiments were available and provide an exhaustive description of the shallow-water sloshing motion. A convergence analysis for non breaking and breaking cases has also been presented.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


1992 ◽  
Vol 241 ◽  
pp. 587-614 ◽  
Author(s):  
T. Dracos ◽  
M. Giger ◽  
G. H. Jirka

An experimental investigation of plane turbulent jets in bounded fluid layers is presented. The development of the jet is regular up to a distance from the orifice of approximately twice the depth of the fluid layer. From there on to a distance of about ten times the depth, the flow is dominated by secondary currents. The velocity distribution over a cross-section of the jet becomes three-dimensional and the jet undergoes a constriction in the midplane and a widening near the bounding surfaces. Beyond a distance of approximately ten times the depth of the bounded fluid layer the secondary currents disappear and the jet starts to meander around its centreplane. Large vortical structures develop with axes perpendicular to the bounding surfaces of the fluid layer. With increasing distance the size of these structures increases by pairing. These features of the jet are associated with the development of quasi two-dimensional turbulence. It is shown that the secondary currents and the meandering do not significantly affect the spreading of the jet. The quasi-two-dimensional turbulence, however, developing in the meandering jet, significantly influences the mixing of entrained fluid.


Author(s):  
L. Gallar ◽  
I. Tzagarakis ◽  
V. Pachidis ◽  
R. Singh

After a shaft failure the compression system of a gas turbine is likely to surge due to the heavy vibrations induced on the engine after the breakage. Unlike at any other conditions of operation, compressor surge during a shaft over-speed event is regarded as desirable as it limits the air flow across the engine and hence the power available to accelerate the free turbine. It is for this reason that the proper prediction of the engine performance during a shaft over-speed event claims for an accurate modelling of the compressor operation at reverse flow conditions. The present study investigates the ability of the existent two dimensional algorithms to simulate the compressor performance in backflow conditions. Results for a three stage axial compressor at reverse flow were produced and compared against stage by stage experimental data published by Gamache. The research shows that due to the strong radial fluxes present over the blades, two dimensional approaches are inadequate to provide satisfactory results. Three dimensional effects and inaccuracies are accounted for by the introduction of a correction parameter that is a measure of the pressure loss across the blades. Such parameter is tailored for rotors and stators and enables the satisfactory agreement between calculations and experiments in a stage by stage basis. The paper concludes with the comparison of the numerical results with the experimental data supplied by Day on a four stage axial compressor.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
A. Hildebrandt ◽  
F. Schilling

The present paper deals with the numerical and experimental investigation of the effect of return channel (RCH) dimensions of a centrifugal compressor stage on the aerodynamic performance. Three different return channel stages were investigated, two stages comprising three-dimensional (3D) return channel blades and one stage comprising two-dimensional (2D) RCH vanes. The analysis was performed regarding both the investigation of overall performance (stage efficiency, RCH total pressure loss coefficient) and detailed flow-field performance. For detailed experimental flow-field investigation at the stage exit, six circumferentially traversed three-hole probes were positioned downstream the return channel exit in order to get two-dimensional flow-field information. Additionally, static pressure wall measurements were taken at the hub and shroud pressure and suction side (SS) of the 2D and 3D return channel blades. The return channel system overall performance was calculated by measurements of the circumferentially averaged 1D flow field downstream the diffuser exit and downstream the stage exit. Dependent on the type of return channel blade, the numerical and experimental results show a significant effect on the flow field overall and detail performance. In general, satisfactory agreement between computational fluid dynamics (CFD)-prediction and test-rig measurements was achieved regarding overall and flow-field performance. In comparison with the measurements, the CFD-calculated stage performance (efficiency and pressure rise coefficient) of all the 3D-RCH stages was slightly overpredicted. Very good agreement between CFD and measurement results was found for the static pressure distribution on the RCH wall surfaces while small CFD-deviations occur in the measured flow angle at the stage exit, dependent on the turbulence model selected.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


1999 ◽  
Vol 09 (04) ◽  
pp. 695-704 ◽  
Author(s):  
V. N. BIKTASHEV ◽  
A. V. HOLDEN ◽  
S. F. MIRONOV ◽  
A. M. PERTSOV ◽  
A. V. ZAITSEV

Ventricular fibrillation is believed to be produced by the breakdown of re-entrant propagation waves of excitation into multiple re-entrant sources. These re-entrant waves may be idealized as spiral waves in two-dimensional, and scroll waves in three-dimensional excitable media. Optically monitored, simultaneously recorded endocardial and epicardial patterns of activation on the ventricular wall do not always show spiral waves. We show that numerical simulations, even with a simple homogeneous excitable medium, can reproduce the key features of the simultaneous endo- and epicardial visualizations of propagating activity, and so these recordings may be interpreted in terms of scroll waves within the ventricular wall.


Sign in / Sign up

Export Citation Format

Share Document