Occurrences of counter electrojets and possible ionospheric TEC variations round new Moon and full Moon days across the low latitude Indian region

2019 ◽  
Vol 13 (3) ◽  
pp. 245-255
Author(s):  
Prashanthi Talari ◽  
Sampad Kumar Panda

Abstract The present paper investigates the alterations in ionospheric Total Electron Content (TEC) over a low latitude location Bangalore (Geographic latitude {12.9^{\circ }}\hspace{2.38387pt}\text{N} and longitude {77.6^{\circ }}\hspace{2.38387pt}\text{E}; Geomagnetic latitude 4.{5^{\circ }}\hspace{2.38387pt}\text{N}) in India, corresponding to the new Moon and full Moon days which are associated with abnormality in the eastward Equatorial Electrojet (EEJ) currents. It has been well established that even during certain geomagnetic quiet days, the EEJ current direction is reversed, resulting in a westward electrojet current called Counter Electrojet (CEJ) which is more prominent around the new Moon and full Moon days, favored by Sun–Moon–Earth alignments and lunar orbital characteristics. The Global Positioning System (GPS) derived TEC at Bangalore is investigated for full Moon and new Moon and their adjacent days during the period 2008–2015. The presence of CEJ during these days suggests the foremost role of driving EEJ current over the equator in the alterations of spatiotemporal distributions of TEC over the low latitude region. The deviations in quiet time TEC during new Moon and full Moon days are quantified in this study that may give a thrust towards modeling of lunar tidal effects in the flipped ionospheric parameter over the Indian region. The study would also support analysis of future solar eclipse effects on ionosphere those involve additional photoionization production/recombination processes corresponding to the passage of lunar shadow and cooling effects. Moreover, the results underpin modeling and mitigation of ionospheric error in the satellite-based positioning, navigation, and communication applications.

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Pin-Hsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

AbstractThis study investigates the medium-scale traveling ionospheric disturbances (MSTIDs) statistically at the low-latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5° N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800–2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200–2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100–140 during 0000–0300 LT. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high-resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).


2020 ◽  
Author(s):  
PinHsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

Abstract This study investigates the medium–scale traveling ionospheric disturbances (MSTIDs) statistically at the low–latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5°N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800-2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200-2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100-140. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high–resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).


2011 ◽  
Vol 29 (7) ◽  
pp. 1267-1275 ◽  
Author(s):  
L. Jose ◽  
S. Ravindran ◽  
C. Vineeth ◽  
T. K. Pant ◽  
S. Alex

Abstract. Equatorial Electrojet (EEJ) and Equatorial Ionization Anomaly (EIA) are two large-scale processes in the equatorial/low latitude ionosphere, driven primarily by the eastward electric field during daytime. In the present paper we investigate the correlation between the Integrated EEJ strength (IEEJ) and the EIA parameters like the total electron content at the northern crest, location of crest in Magnetic latitude and strength of the EIA for the Indian sector. A good correlation has been observed between the IEEJ and EIA when a time delay is introduced between IEEJ and EIA parameters. This time delay is regarded as the response time of equatorial ionosphere in context of the evolution of EIA vis-à-vis EEJ. Further, a seasonal variation in the time delay has been observed, which is believed to be due to changes in thermospheric wind. Using the response time and the linear relationship obtained, the possibility of near-real time prediction of EIA parameters has been attempted and found that the prediction holds well during the geomagnetically quiet periods. The paper discusses these aspects in detail.


2006 ◽  
Vol 24 (12) ◽  
pp. 3279-3292 ◽  
Author(s):  
P. V. S. Rama Rao ◽  
S. Gopi Krishna ◽  
K. Niranjan ◽  
D. S. V. V. D. Prasad

Abstract. With the recent increase in the satellite-based navigation applications, the ionospheric total electron content (TEC) and the L-band scintillation measurements have gained significant importance. In this paper we present the temporal and spatial variations in TEC derived from the simultaneous and continuous measurements made, for the first time, using the Indian GPS network of 18 receivers located from the equator to the northern crest of the equatorial ionization anomaly (EIA) region and beyond, covering a geomagnetic latitude range of 1° S to 24° N, using a 16-month period of data for the low sunspot activity (LSSA) years of March 2004 to June 2005. The diurnal variation in TEC at the EIA region shows its steep increase and reaches its maximum value between 13:00 and 16:00 LT, while at the equator the peak is broad and occurs around 16:00 LT. A short-lived day minimum occurs between 05:00 to 06:00 LT at all the stations from the equator to the EIA crest region. Beyond the crest region the day maximum values decrease with the increase in latitude, while the day minimum in TEC is flat during most of the nighttime hours, i.e. from 22:00 to 06:00 LT, a feature similar to that observed in the mid-latitudes. Further, the diurnal variation in TEC show a minimum to maximum variation of about 5 to 50 TEC units, respectively, at the equator and about 5 to 90 TEC units at the EIA crest region, which correspond to range delay variations of about 1 to 8 m at the equator to about 1 to 15 m at the crest region, at the GPS L1 frequency of 1.575 GHz. The day-to-day variability is also significant at all the stations, particularly during the daytime hours, with maximum variations at the EIA crest regions. Further, similar variations are also noticed in the corresponding equatorial electrojet (EEJ) strength, which is known to be one of the major contributors for the observed day-to-day variability in TEC. The seasonal variation in TEC maximizes during the equinox months followed by winter and is minimum during the summer months, a feature similar to that observed in the integrated equatorial electrojet (IEEJ) strength for the corresponding seasons. In the Indian sector, the EIA crest is found to occur in the latitude zone of 15° to 25° N geographic latitudes (5° to 15° N geomagnetic latitudes). The EIA also maximizes during equinoxes followed by winter and is not significant in the summer months in the LSSA period, 2004–2005. These studies also reveal that both the location of the EIA crest and its peak value in TEC are linearly related to the IEEJ strength and increase with the increase in IEEJ.


2021 ◽  
Vol 13 (5) ◽  
pp. 945
Author(s):  
Zhongxin Deng ◽  
Rui Wang ◽  
Yi Liu ◽  
Tong Xu ◽  
Zhuangkai Wang ◽  
...  

In the current study, we investigated the mechanism of medium-scale traveling ionospheric disturbance (MSTID) triggering spread-F in the low latitude ionosphere using ionosonde observation and Global Navigation Satellite System-Total Electron Content (GNSS-TEC) measurement. We use a series of morphological processing techniques applied to ionograms to retrieve the O-wave traces automatically. The maximum entropy method (MEM) was also utilized to obtain the propagation parameters of MSTID. Although it is widely acknowledged that MSTID is normally accompanied by polarization electric fields which can trigger Rayleigh–Taylor (RT) instability and consequently excite spread-F, our statistical analysis of 13 months of MSTID and spread-F occurrence showed that there is an inverse seasonal occurrence rate between MSTID and spread-F. Thus, we assert that only MSTID with certain properties can trigger spread-F occurrence. We also note that the MSTID at night has a high possibility to trigger spread-F. We assume that this tendency is consistent with the fact that the polarization electric field caused by MSTID is generally the main source of post-midnight F-layer instability. Moreover, after thorough investigation over the azimuth, phase speed, main frequency, and wave number over the South America region, we found that the spread-F has a tendency to be triggered by nighttime MSTID, which is generally characterized by larger ΔTEC amplitudes.


2021 ◽  
Vol 13 (8) ◽  
pp. 1559
Author(s):  
Fabricio S. Prol ◽  
M. Mainul Hoque

A 3D-model approach has been developed to describe the electron density of the topside ionosphere and plasmasphere based on Global Navigation Satellite System (GNSS) measurements onboard low Earth orbit satellites. Electron density profiles derived from ionospheric Radio Occultation (RO) data are extrapolated to the upper ionosphere and plasmasphere based on a linear Vary-Chap function and Total Electron Content (TEC) measurements. A final update is then obtained by applying tomographic algorithms to the slant TEC measurements. Since the background specification is created with RO data, the proposed approach does not require using any external ionospheric/plasmaspheric model to adapt to the most recent data distributions. We assessed the model accuracy in 2013 and 2018 using independent TEC data, in situ electron density measurements, and ionosondes. A systematic better specification was obtained in comparison to NeQuick, with improvements around 15% in terms of electron density at 800 km, 26% at the top-most region (above 10,000 km) and 26% to 55% in terms of TEC, depending on the solar activity level. Our investigation shows that the developed model follows a known variation of electron density with respect to geographic/geomagnetic latitude, altitude, solar activity level, season, and local time, revealing the approach as a practical and useful tool for describing topside ionosphere and plasmasphere using satellite-based GNSS data.


2008 ◽  
Vol 26 (4) ◽  
pp. 893-903 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. Sometimes the ionospheric total electron content (TEC) is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS) observations in the Asia/Australia sector as well as global ionospheric maps (GIMs) produced by Jet Propulsion Laboratory (JPL). Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA) crests, which are consistent with those low-latitude events presented by Liu et al. (2008). During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP) spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event). Further investigation is warrented to identify/separate contributions from possible sources.


2018 ◽  
Vol 14 (2) ◽  
pp. 111
Author(s):  
Sri Ekawati

The solar flare is potential to cause sudden increase of the electron density in the ionosphere,particularly in D layer, known as Sudden Ionospheric Disturbances (SID). This increase of electron density occurs not only in the ionospheric D layer but also in the ionospheric E and F layers. Total Electron Content (TEC) measured by GPS is the total number of electrons from D to F layer. The aim of this research is to study the effect of solar flare x-rays, greater than M5 class in 2015, on ionospheric TEC over Bandung and Manado. This paper presents the preliminary result of ionospheric TEC response on solar flare occurrence over Indonesia. The ionospheric TEC data is derived from GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at Bandung (-6.90o S;107.6o E geomagnetic latitude 16.54o S) and Manado (1.48o N; 124.85o E geomagnetic latitude 7.7o S). The solar x-rays flares classes analyzed where M5.1 on 10 March 2015 and M7.9 on 25 June 2015. Slant TEC (STEC) values where calculated to obtain Vertical TEC (VTEC) and the Differential of the VTEC (DVTEC) per PRN satellite for further analysis. The results showed that immediately after the flare, there where sudden enhancement of the VTEC and the DVTEC (over Bandung and Manado) at the same time. The time delay of ionospheric TEC response on M5.1 flare was approximately 2 minutes, then the VTEC increased by 0.5 TECU and the DVTEC rose sharply by 0.5 – 0.6 TECU/minutes. Moreover, the time delay after the M7.9 flare was approximately 11 minutes, then the VTEC increased by 1 TECU and the DVTEC rose sharply by 0.6 – 0.9 TECU/minutes. ABSTRAK Flare matahari berpotensi meningkatkan kerapatan elektron ionosfer secara mendadak, khususnya di lapisan D, yang dikenal sebagai Sudden Ionospheric Disturbances (SID). Peningkatan kerapatan elektron tersebut terjadi tidak hanya di lapisan D, tetapi juga di lapisan E dan F ionosfer. Total Electron Content (TEC) dari GPS merupakan jumlah banyaknya elektron total dari lapisan D sampai lapisan F. Penelitian ini bertujuan mengetahui efek flare, yang lebih besar dari kelas M5 tahun 2015, terhadap TEC ionosfer di atas Bandung dan Manado. Makalah ini merupakan hasil awal dari respon TEC ionosfer terhadap fenomena flare di atas Indonesia. Data TEC ionosfer diperoleh dari penerima GPS Ionospheric Scintillation and TEC Monitor (GISTM) di Bandung (-6,90o S; 107,60o E lintang geomagnet 16,54o LS) dan Manado (1,48oLU;124,85oBT lintang geomagnet 7,7o LS) dikaitkan dengan kejadian flare kelas M5.1 pada tanggal 10 Maret 2015 dan kelas M7.9 pada tanggal 25 Juni 2015. Nilai Slant TEC (STEC) dihitung untuk memperoleh nilai Vertical TEC (VTEC), kemudian nilai Differential of VTEC (DVTEC) per PRN satelit diperoleh untuk analisis selanjutnya. Hasil menunjukkan segera setelah terjadi flare, terjadi peningkatan VTEC dan DVTEC (di atas Bandung dan Manado) secara mendadak pada waktu yang sama. Waktu tunda dari respon TEC ionosfer setelah terjadi flare M5.1 adalah sekitar 2 menit, kemudian VTEC meningkat sebesar 0,5 TECU dan DVTEC meningkat secara tajam sebesar 0,5 – 0,6 TECU/menit. Sedangkan, waktu tunda setelah terjadi flare M7.9 adalah 11 menit, kemudian VTEC meningkat sebesar 1 TECU dan DVTEC meningkat secara tajam sebesar 0,6 – 0,9 TECU/menit.


2021 ◽  
Vol 13 (22) ◽  
pp. 4559
Author(s):  
Marjolijn Adolfs ◽  
Mohammed Mainul Hoque

With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring the Nighttime Winter Anomaly (NWA) and other effects is possible and is presented here. The NWA is visible in the Northern Hemisphere for the American sector and in the Southern Hemisphere for the Asian longitude sector under solar minimum conditions. During the NWA, the mean ionization level is found to be higher in the winter nights compared to the summer nights. The approach proposed here is a fully connected neural network (NN) model trained with Global Ionosphere Maps (GIMs) data from the last two solar cycles. The day of year, universal time, geographic longitude, geomagnetic latitude, solar zenith angle, and solar activity proxy, F10.7, were used as the input parameters for the model. The model was tested with independent TEC datasets from the years 2015 and 2020, representing high solar activity (HSA) and low solar activity (LSA) conditions. Our investigation shows that the root mean squared (RMS) deviations are in the order of 6 and 2.5 TEC units during HSA and LSA period, respectively. Additionally, NN model results were compared with another model, the Neustrelitz TEC Model (NTCM). We found that the neural network model outperformed the NTCM by approximately 1 TEC unit. More importantly, the NN model can reproduce the evolution of the NWA effect during low solar activity, whereas the NTCM model cannot reproduce such effect in the TEC variation.


Sign in / Sign up

Export Citation Format

Share Document