On the topology of geometric and rational orbits for algebraic group actions over valued fields

2020 ◽  
Vol 23 (6) ◽  
pp. 965-981
Author(s):  
Phuong Bac Dao

AbstractIn this note, we study the relationship between Zariski and relative closedness for actions of (smooth) algebraic groups defined over valued (mainly local) fields of any characteristic. In particular, we use some recent basic results regarding the completely reducible subgroups and cocharacter-closedness due to Bate–Herpel–Röhrle–Tange and Uchiyama to construct some actions of simple algebraic groups G of the types {D_{4}}, {E_{6}}, {E_{7}}, {E_{8}}, {G_{2}} on an affine variety defined over a local function field k, and {v\in V(k)} such that the geometric orbit {G.v} is Zariski closed although the corresponding relative orbit {G(k).v} is not closed in the topology induced from k. Besides, by using an interesting result due to Gabber, Gille and Moret-Bailly, we show that this phenomenon does not appear when we consider the action of either a smooth unipotent group or a smooth commutative algebraic group, defined over an admissible valued (e.g., local) field.

2016 ◽  
Vol 152 (8) ◽  
pp. 1697-1724 ◽  
Author(s):  
Tanmay Deshpande

In this paper, we extend the notion of Shintani descent to general (possibly disconnected) algebraic groups defined over a finite field $\mathbb{F}_{q}$. For this, it is essential to treat all the pure inner $\mathbb{F}_{q}$-rational forms of the algebraic group at the same time. We prove that the notion of almost characters (introduced by Shoji using Shintani descent) is well defined for any neutrally unipotent algebraic group, i.e. an algebraic group whose neutral connected component is a unipotent group. We also prove that these almost characters coincide with the ‘trace of Frobenius’ functions associated with Frobenius-stable character sheaves on neutrally unipotent groups. In the course of the proof, we also prove that the modular categories that arise from Boyarchenko and Drinfeld’s theory of character sheaves on neutrally unipotent groups are in fact positive integral, confirming a conjecture due to Drinfeld.


2018 ◽  
Vol 19 (4) ◽  
pp. 1031-1091
Author(s):  
Thierry Stulemeijer

Given a locally finite leafless tree $T$, various algebraic groups over local fields might appear as closed subgroups of $\operatorname{Aut}(T)$. We show that the set of closed cocompact subgroups of $\operatorname{Aut}(T)$ that are isomorphic to a quasi-split simple algebraic group is a closed subset of the Chabauty space of $\operatorname{Aut}(T)$. This is done via a study of the integral Bruhat–Tits model of $\operatorname{SL}_{2}$ and $\operatorname{SU}_{3}^{L/K}$, that we carry on over arbitrary local fields, without any restriction on the (residue) characteristic. In particular, we show that in residue characteristic $2$, the Tits index of simple algebraic subgroups of $\operatorname{Aut}(T)$ is not always preserved under Chabauty limits.


2015 ◽  
Vol 59 (4) ◽  
pp. 911-924 ◽  
Author(s):  
Jonathan Elmer ◽  
Martin Kohls

AbstractAbstract Let G be a linear algebraic group over an algebraically closed field 𝕜 acting rationally on a G-module V with its null-cone. Let δ(G, V) and σ(G, V) denote the minimal number d such that for every and , respectively, there exists a homogeneous invariant f of positive degree at most d such that f(v) ≠ 0. Then δ(G) and σ(G) denote the supremum of these numbers taken over all G-modules V. For positive characteristics, we show that δ(G) = ∞ for any subgroup G of GL2(𝕜) that contains an infinite unipotent group, and σ(G) is finite if and only if G is finite. In characteristic zero, δ(G) = 1 for any group G, and we show that if σ(G) is finite, then G0 is unipotent. Our results also lead to a more elementary proof that βsep(G) is finite if and only if G is finite.


2020 ◽  
Vol 8 ◽  
Author(s):  
Michael Bate ◽  
Benjamin Martin ◽  
Gerhard Röhrle

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$ , then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$ -conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.


2000 ◽  
Vol 52 (5) ◽  
pp. 1018-1056 ◽  
Author(s):  
Zinovy Reichstein ◽  
Boris Youssin

AbstractLet G be an algebraic group and let X be a generically free G-variety. We show that X can be transformed, by a sequence of blowups with smooth G-equivariant centers, into a G-variety Xʹ with the following property: the stabilizer of every point of Xʹ is isomorphic to a semidirect product U × A of a unipotent group U and a diagonalizable group A.As an application of this result, we prove new lower bounds on essential dimensions of some algebraic groups. We also show that certain polynomials in one variable cannot be simplified by a Tschirnhaus transformation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Falk Bannuscher ◽  
Alastair Litterick ◽  
Tomohiro Uchiyama

Abstract Let 𝑘 be a non-perfect separably closed field. Let 𝐺 be a connected reductive algebraic group defined over 𝑘. We study rationality problems for Serre’s notion of complete reducibility of subgroups of 𝐺. In particular, we present the first example of a connected non-abelian 𝑘-subgroup 𝐻 of 𝐺 that is 𝐺-completely reducible but not 𝐺-completely reducible over 𝑘, and the first example of a connected non-abelian 𝑘-subgroup H ′ H^{\prime} of 𝐺 that is 𝐺-completely reducible over 𝑘 but not 𝐺-completely reducible. This is new: all previously known such examples are for finite (or non-connected) 𝐻 and H ′ H^{\prime} only.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Carlos A. M. André ◽  
João Dias

Abstract We consider smooth representations of the unit group G = A × G=\mathcal{A}^{\times} of a finite-dimensional split basic algebra 𝒜 over a non-Archimedean local field. In particular, we prove a version of Gutkin’s conjecture, namely, we prove that every irreducible smooth representation of 𝐺 is compactly induced by a one-dimensional representation of the unit group of some subalgebra of 𝒜. We also discuss admissibility and unitarisability of smooth representations of 𝐺.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2017 ◽  
Vol Volume 1 ◽  
Author(s):  
Bertrand Remy ◽  
Amaury Thuillier ◽  
Annette Werner

Given a split semisimple group over a local field, we consider the maximal Satake-Berkovich compactification of the corresponding Euclidean building. We prove that it can be equivariantly identified with the compactification which we get by embedding the building in the Berkovich analytic space associated to the wonderful compactification of the group. The construction of this embedding map is achieved over a general non-archimedean complete ground field. The relationship between the structures at infinity, one coming from strata of the wonderful compactification and the other from Bruhat-Tits buildings, is also investigated.


Author(s):  
Mark Green ◽  
Phillip Griffiths ◽  
Matt Kerr

This chapter deals with Hodge representations and Hodge domains. For general polarized Hodge structures, it considers which semi-simple ℚ-algebraic groups M can be Mumford-Tate groups of polarized Hodge structures, the different realizations of M as a Mumford-Tate group, and the relationship among the corresponding Mumford-Tate domains. The chapter uses standard material from the structure theory of semisimple Lie algebras and their representation theory. The discussion covers the adjoint representation and characterization of which weights give faithful Hodge representations, the classical groups and the exceptional groups, and Mumford-Tate domains as particular homogeneous complex manifolds. The examples concerning the classical groups illustrate both the linear algebra and Vogan diagram methods.


Sign in / Sign up

Export Citation Format

Share Document