A Practical Elastic Plastic Damage Model for Concrete

2011 ◽  
Vol 243-249 ◽  
pp. 313-318 ◽  
Author(s):  
Hu Qi ◽  
Yun Gui Li ◽  
Xi Lin Lu

In this paper, an elastic plastic damage model is presented based on the combined use of elastic plastic constitutive equations along with continuum damage mechanics. A tensile and a compressive damage variable are adopted to describe the different responses of concrete under tension and compression, respectively. The Helmholtz Free Energy is decomposed into hydrostatic stress component and deviatoric stress components. The hydrostatic stress component is neglected and the deviatoric stress component is amended according to stress state, resulting in a more accurate description of the concrete’s response under multi-axial stress state. Finally, through several numerical simulations it is proved that the proposed model has the capability of simulating typical nonlinear performances of concrete material.

2013 ◽  
Vol 22 (5-6) ◽  
pp. 149-159
Author(s):  
Ziad N. Taqieddin ◽  
George Z. Voyiadjis

AbstractIn the non-linear finite element analysis (NFEA) of concrete materials, continuum damage mechanics (CDM) provides a powerful framework for the derivation of constitutive models capable of describing the mechanical behavior of such materials. The internal state variables of CDM can be introduced to the elastic analysis of concrete to form elastic-damage models (no inelastic strains), or to the elastic-plastic analysis in order to form coupled/uncoupled elastic-plastic-damage models. Experimental evidence that is well documented in literature shows that the susceptibility of concrete to damage and failure is distinguished under deviatoric loading from that corresponding to hydrostatic loading. A reduction factor is usually introduced into a CDM model to reduce the susceptibility of concrete to hydrostatic stresses/strains. In this work, the effect of a hydrostatic stress/strain reduction factor on the performances of two NFEA concrete models will be studied. These two (independently published) models did not provide any results showing such effect. One of these two models is an elastic-damage model, whereas the other is an uncoupled elastic-plastic-damage model. Simulations and comparisons are carried out between the performances of the two models under uniaxial tensile and compressive loading conditions. Simulations are also provided for the uncoupled elastic-plastic-damage model under the following additional loading conditions: biaxial tension and biaxial compression, uniaxial cyclic loading, and varying ratios of triaxial compressive loadings. These simulations clearly show the effect of the reduction factor on the numerically depicted behaviors of concrete materials. To have rational comparisons, the hydrostatic stress reduction factor applied to each model is chosen to be a function of the internal state variables common to both models. Therefore, once the two models are calibrated to simulate the experimental behaviors, their corresponding reduction factors are readily available at every increment of the iterative NFEA procedures.


Author(s):  
Weizhe Wang

A multi-axial continuum damage mechanics (CDM) model was proposed to calculate the multi-axial creep–fatigue damage of a high temperature component. A specific outer cylinder of a 1000 MW supercritical steam turbine was used in this study, and the interaction of the creep and fatigue behavior of the outer cylinder was numerically investigated under a startup–running–shutdown process. To this end, the multi-axial stress–strain behavior of the outer cylinder was numerically studied using Abaqus. The in-site measured temperatures were provided to validate the heat transfer coefficients, which were used to calculate the temperature field of the outer cylinder. The multi-axial mechanics behavior of the outer cylinder was investigated in detail, with regard to the temperature, Mises stress, hydrostatic stress, multi-axial toughness factor, multi-axial creep strain, and damage. The results demonstrated that multi-axial mechanics behavior reduced the total damage.


2014 ◽  
Vol 488-489 ◽  
pp. 799-802
Author(s):  
Hong Jie Chen ◽  
Wei Ya Xu ◽  
Ru Bin Wang ◽  
Wei Wang

With complex mechanics character and under the action of compression and tension in tri-direction, rock will show coupled plastic-damage mechanism as its basic character. Phenomenological coupled elastic-plastic-damage constitutive model with internal variable is proposed based on thermal mechanics theory, elastic law and macro damage mechanics. Numerical experiments on this model and analyze the model character. The result shows that the coupling model could realize rocks softening behavior brought about by damage and strength enlargement caused by confining pressure increasing.


2018 ◽  
Vol 157 ◽  
pp. 01023
Author(s):  
Milan Žmindák ◽  
Martin Dudinský

It is well that a finite element method is very popular simulation method to predict the physical behavior of systems and structures. In the last years an increase of interest in a new type of numerical methods known as meshless methods was observed. The paper deals with application of radial basis functions on modelling of inelastic damage using continuum damage mechanics of layered plate composite structures reinforced with long unidirectional fibers. For numerical simulations of elastic-plastic damage of layered composite plates own computational programs were implemented in MATLAB programming language. We will use the Newton-Raphson method to solve nonlinear systems of equations. Evaluation damage during plasticity has been solved using return mapping algorithm. The results of elastic-plastic damage analysis of composite plate with unsymmetrical laminate stacking sequence are presented.


2018 ◽  
Vol 28 (4) ◽  
pp. 538-565 ◽  
Author(s):  
Jiawei Huang ◽  
Qingchun Meng ◽  
Zhixin Zhan ◽  
Weiping Hu ◽  
Fei Shen

A continuum damage mechanics-based method is adopted to predict the fatigue life of notched specimens subjected to constant amplitude cyclic loading while containing single or multiple overloads. The residual stress and plastic damage induced by an overload are considered to be the main factors affecting the fatigue life of a specimen. The residual stress and plastic strain fields of a notched specimen are calculated using the elastic–plastic finite element method. The mean stress of the following cyclic loading is then varied by superimposing the residual stress. Meanwhile, the plastic damage is calculated based on the ductile damage model and accumulated into the total damage of the material. The quantitative effects of an overload on the damage evolution and the fatigue life are evaluated. Furthermore, the effects of the damage–overload ratio on the variation of the residual stress induced by an overload are investigated, and the effects of the occurrence time for a single overload and the occurrence frequency for multiple overloads are studied.


The creep rupture of circumferentially notched, circular tension bars which are subjected to constant load for long periods at constant temperature is studied both experimentally and by using a time-iterative numerical procedure which describes the formation and growth of creep damage as a field quantity. The procedure models the development of failed or cracked regions of material due to the growth and linkage of grain boundary defects. Close agreement is shown between experimental and theoretical values of the representative rupture stress, of the zones of creep damage and of the development of cracks for circular (Bridgman, Studies in large plastic flow and fracture , New York: McGraw-Hill (1952)) and British Standard notched specimens (B.S. no. 3500 (1969)). The minimum section of the circular notch is shown to be subjected to relatively uniform states of multi-axial stress and damage while the B.S. notch is shown to be subjected to non-uniform stress and damage fields in which single cracks grow through relatively undamaged material. The latter situation is shown to be analogous to the growth of a discrete crack in a lightly damaged continuum. The continuum damage mechanics theory presented here is shown to be capable of accurately predicting these extreme types of behaviour.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
M. Ganjiani

In this paper, an elastoplastic-damage constitutive model is presented. The formulation is cast within the framework of continuum damage mechanics (CDM) by means of the internal variable theory of thermodynamics. The damage is assumed as a tensor type variable and its evolution is developed based on the energy equivalence hypothesis. In order to discriminate the plastic and damage deformation, two surfaces named as plastic and damage are introduced. The damage surface has been developed so that it can model the nonlinear variation of damage. The details of the model besides its implicit integration algorithm are presented. The model is implemented as a user-defined subroutine user-defined material (UMAT) in the abaqus/standard finite element program for numerical simulation purposes. In the regard of investigating the capability of model, the shear and tensile tests are experimentally conducted, and corresponding results are compared with those predicted numerically. These comparisons are also accomplished for several experiments available in the literature. Satisfactory agreement between experiments and numerical predictions provided by the model implies the capability of the model to predict the plastic deformation as well as damage evolution in the materials.


Sign in / Sign up

Export Citation Format

Share Document