Four bits data sequence generators based ytterbium doped fiber amplifiers for upgrading maximum Q factor and minimum BER

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Aadel M. Alatwi ◽  
Ahmed Nabih Zaki Rashed ◽  
IS Amiri

AbstractWe have simulated four bits data sequence generators based ytterbium-doped fiber amplifiers for upgrading max. Q factor and min. BER. Optical power variations against time duration after fiber cable length of 250 km with the bits sequence generators of 0101, 1000, and 1010 respectively are simulated. As well as the electrical power/total received power variations against frequency after photodetector receiver with the bits sequence generators of 0101, 1000, and 1010 respectively are discussed in details. Moreover, the signal power amplitude level with the time period duration after photodetector receiver/3R regenerator with the bits sequence generators of 0101, 1000, and 1010 respectively are clarified to show the max. Q factor and min. BER values for each case.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M.A. Eid ◽  
Eslam Shehata ◽  
Ahmed Nabih Zaki Rashed

Abstract This paper contains a main model which concludes a two optical fiber cable along 70 km and with Parametric/Raman amplifiers with a result of total power 0.781 dBm that computed by the optical power meter which is located before the receiver part and the second optical fiber channel, a total power −44.186 dBm at the end of model which is computed by the electrical power meter visualizer, and a max. Q factor 2.548 computed by the BER analyzer. The suggested model has outlined some updates on the previous model to improve the results so that the results are increased at the same length as the following: total power of optical signal becomes 10.039 dBm, total power of electrical signal becomes 0.624 dBm, and the max. Q factor becomes 9.60787.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Ahmed Nabih Zaki Rashed ◽  
Tahesin Samira Delwar ◽  
Abrar Siddique ◽  
Jee Youl Ryu

Abstract This study has simulated the raised cosine, linear, cubic measured pulses numerically with electrical jitter amplitude variations impact on fiber communication systems. The max Q factor, total electrical power variations against electrical jitter amplitude variations are demonstrated for various pulse configurations. The Q factor and signal power amplitude variations versus the time period with the spectral frequency are clarified based on various pulse configurations with an optimum amplitude jitter of 0.1 unit interval (UI). The total electrical power after the avalanche photodiode (APD) photodetector is measured numerically based on various pulse configurations with an optimum amplitude jitter of 0.1 UI.


2016 ◽  
Vol 37 (1) ◽  
Author(s):  
Kulwinder Singh ◽  
Kamaljit Singh Bhatia ◽  
Hardeep Singh Ryait ◽  
Amandeep Kaur

AbstractThis paper has represented the operating conditions for radio-over-fiber (RoF) transmission system such as Q factor, received optical power and BER at different fiber lengths. This paper also investigated optical loss, optical power spectrum and electrical power spectrum at different frequencies for different modulation formats and optical loss at different radio frequencies for varying fiber length.


Author(s):  
Aadel M. Alatwi ◽  
Ahmed Nabih Zaki Rashed

<p><span>This study shows hybrid continuous-phase frequency shift keying (CPFSK)/optical quadrature-phase shift keying (OQPSK) modulation transmission techniques’ performance efficiency with return-to-zero (RZ) line coding scheme–based fiber systems in passive optical networks. Max. Q factor/min. bit error rate variations versus modulation frequency and fiber length are studied in detail for various bits/symbol, based on hybrid proposed modulation transmission techniques. Also, optical power and received electrical power variations are simulated with fiber-length variations at a specified modulation frequency of 300 GHz. Max. Q Factor, min. BER, max. signal power, and min. noise power variations are based on hybrid modulation techniques for CPFSK/OQPSK of 32 bits/symbol and a modulation frequency of 500 GHz through a fiber length of 30 km.</span></p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Vishal Sorathiya ◽  
Sunil Lavadiya ◽  
Huda Said Abd El-Hamid ◽  
Ahmed Nabih Zaki Rashed

Abstract Article clarified the optimum fiber amplifiers length for wide band fiber system applications. Optical suppressed carrier transceiver with various fiber amplifier lengths in long haul applications is simulated by using optisystem simulation program version 13. Max. Q coefficient and min. BER can be tested for various fiber amplifiers lengths from 5 to 30 m. The optimum performance efficiency is achieved with 5 m amplifier length which the max. Q coefficient is 62.5 and bits error rate is tended to zero. Peak power amplitude level, noise signal power level, noise signal amplitude level (NSAL) and peak signal amplitude level after channel with a 45 km length for optimum fiber optic amplifier length of 5 m are measured.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Fatma Mohammed Aref Mahmoud Houssien ◽  
Ahmed Nabih Zaki Rashed ◽  
Abd El-Naser A. Mohammed

AbstractThe 16-channels dense wavelength division multiplexing (DWDM) systems have been optimized by utilizing hybrid configurations of conventional optical fiber amplifiers (EDFA, RAMAN and SOA) and optical photodetectors (PIN, APD(Si) and APD(InGaAs)). The DWDM systems were implemented for 5 Gb/s channel speed using one of these configurations with 100 GHz channel spacing and 25 km amplifying section. The hybrid configurations are the combinations of (PIN + EDFA), (PIN + RAMAN), (PIN + SOA), (APD(Si) + EDFA), (APD(Si) + RAMAN), (APD(Si) + SOA), (APD(InGaAs) + EDFA), (APD(InGaAs) + RAMAN) and (APD(InGaAs) + SOA). Based on BER, Q-factor and eye diagrams, the performance was compared for these configurations under influences of various thermal noise levels of photodetectors over different fiber lengths ranging from 25 km up to 150 km. The results revealed that both APD structures give optimum performance at input power Pin = 5 dBm due to high internal avalanche gain. EDFA outperforms RAMAN and SOA amplifiers. SOA amplifier shows degraded performance because of nonlinearity effects induced. RAMAN amplifier seems to be the best alternative for long reach DWDM systems because it minimizes the effects of fiber nonlinearities. The configuration (APD(Si) + EDFA) is the most efficient and recommended to be used for transmission distance beyond 100 km due to its larger Q-factor.


2018 ◽  
Vol 39 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Manisha Bharti ◽  
Manoj Kumar ◽  
Ajay K. Sharma

AbstractThe main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.


2019 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Kulwinder Singh ◽  
Manjeet Singh Patterh ◽  
Manjit Singh Bhamrah

Abstract In this paper, dual-order bidirectional pumping schemes of distributed fiber Raman amplifier are compared with standard first-order pumping in wavelength division multiplexed optical transmission systems. The novel comparison analysis is carried out in terms of Optical signal-to-noise ratio and Q-factor, on-off gain and noise figure by varying optical input power and fiber lengths. The results indicate that dual-order schemes present 0.02 dB higher OSNR and 5 dB higher Q-factor in comparison to first-order pumping when input optical power is varied from −4 to 5 dBm. Similarly, there is 4 dB higher on-off gain with dual order comparatively to first order when fiber length varied from 10 to 100 km. However, there is degradation in noise figure and Q-factor due to DRBS noise with dual-order pumping when fiber length from 10 to 100 km. Further, the signal power evolutions along fiber length show that there is 5 dBm improvement for 100 km fiber. The novelty of the work is that comparative analysis exhibits improvement in OSNR, on-off gain and Q-factor using dual-order bidirectional pumping.


2018 ◽  
Vol 225 ◽  
pp. 04008 ◽  
Author(s):  
Shaharin A. Sulaiman ◽  
M. Rosman M. Razif ◽  
Tan Dei Han ◽  
Samson M. Atnaw ◽  
S. Norazilah A. Tamili

There are some weaknesses of using solar PV system especially when there is issue of soiling on the surface of solar PV panel. The consequences for absence of this such study can cause unanticipated cost in the operation of solar PV panel. The objective of this project is to study the trend of soiling rate over different time period and its effect on the performance of solar PV panel in Malaysia and to develop a simple prediction model for cleaning interval of solar PV system in Malaysia. The study was conducted on real-time basis on a building’s roof. Measurements of solar irradiance, voltage, current and the mass of dust collected were performed from both clean and dirty panels. It was discovered that the Monthly Test was significant with 4.53% of performance drop. Further analysis was conducted by running prediction model for cleaning interval. Intersection of graph plotting and fixed cleaning cost gives answer of cleaning interval that can be performed. It can be concluded that for every two and half month is the recommended time interval to perform regular cleaning to maximise electrical power generation by solar PV system in Malaysia.


Sign in / Sign up

Export Citation Format

Share Document