The utility of continuous glucose monitoring systems in the management of children with persistent hypoglycaemia

Author(s):  
Sathyakala Vijayanand ◽  
Paul G. Stevenson ◽  
Maree Grant ◽  
Catherine S. Choong ◽  
Elizabeth A. Davis ◽  
...  

Abstract Objectives Glucose monitoring is vital in children with persistent hypoglycaemia to reduce the risk of adverse neuro-behavioural outcomes; especially in children with hyperinsulinism. The role of continuous glucose monitoring (CGM) systems in monitoring glucose levels in this cohort is limited. The objective of this study was to ascertain the effectiveness of CGM and to evaluate parents’ experience of using CGM for monitoring glucose levels in children with hypoglycaemia. Methods Retrospective analysis of sensor glucose (SG) values from Dexcom G4 CGM with paired finger-prick blood glucose (BG) values was performed to determine the accuracy of CGM. The parent experience of CGM was assessed using a questionnaire administered to families of children with congenital hyperinsulinism currently attending the clinic. Results SG data from 40 children (median age 6 months) with persistent hypoglycaemia (60% Hyperinsulinism) were analysed. The mean difference between 5,650 paired BG and SG values was 0.28 mmol/L. The sensitivity and specificity of CGM to identify severe hypoglycaemia (BG < 3.0 mmol/L) were 54.3% (95% CI: 39.0%, 69.1%) and 97.4% (95% CI: 96.9%, 97.8%) respectively. Parents (n=11) reported less anxiety (n=9), better sleep at night (n=7) and preferred to use CGM for monitoring (n=9). Conclusions Although the high number of false-positive readings precludes the routine use of CGM in the evaluation of hypoglycaemia, it avoids unnecessary BG testing during normoglycaemia. It is an acceptable tool for parents for monitoring their children who are at risk of hypoglycaemia. Newer CGM systems with improved accuracy at lower glucose levels have the potential to further improve monitoring.

Author(s):  
Myat Win ◽  
Rowan Beckett ◽  
Lynn Thomson ◽  
Ajay Thankamony ◽  
Kathy Beardsall

Abstract Background Persistent hypoglycaemia is common in the newborn and is associated with poor neurodevelopmental outcome. Adequate monitoring is critical in prevention, but is dependent on frequent, often hourly blood sampling. Continuous glucose monitoring (CGM) is increasingly being used in children with type 1 diabetes mellitus, but use in neonatology remains limited. We aimed to introduce real-time CGM to provide insights into patterns of dysglycaemia and to support the management of persistent neonatal hypoglycaemia. Methods This is a single centre retrospective study of real-time CGM use over a 4-year period in babies with persistent hypoglycaemia. Results CGMs were inserted in 14 babies: 8 term and 6 preterm infants, 9 with evidence of congenital hyperinsulinism (CHI). A total of 224 days of data were collected demonstrating marked fluctuations in glucose levels in babies with CHI, with a higher sensor glucose SD (1.52±0.79 mmol/l vs 0.77±0.22mmol/l) in infants with CHI compared to preterm infants. A total of 1254 paired glucose values (CGM and blood) were compared and gave a mean absolute relative difference (MARD) of 11%. Conclusion CGM highlighted the challenges of preventing hypoglycaemia in these babies when using intermittent blood glucose levels alone, and the potential application of CGM as an adjunct to clinical care.


2019 ◽  
Vol 104 (10) ◽  
pp. 4356-4364 ◽  
Author(s):  
Viral N Shah ◽  
Stephanie N DuBose ◽  
Zoey Li ◽  
Roy W Beck ◽  
Anne L Peters ◽  
...  

Abstract Context Use of continuous glucose monitoring (CGM) is increasing for insulin-requiring patients with diabetes. Although data on glycemic profiles of healthy, nondiabetic individuals exist for older sensors, assessment of glycemic metrics with new-generation CGM devices is lacking. Objective To establish reference sensor glucose ranges in healthy, nondiabetic individuals across different age groups using a current generation CGM sensor. Design Multicenter, prospective study. Setting Twelve centers within the T1D Exchange Clinic Network. Patients or Participants Nonpregnant, healthy, nondiabetic children and adults (age ≥6 years) with nonobese body mass index. Intervention Each participant wore a blinded Dexcom G6 CGM, with once-daily calibration, for up to 10 days. Main Outcome Measures CGM metrics of mean glucose, hyperglycemia, hypoglycemia, and glycemic variability. Results A total of 153 participants (age 7 to 80 years) were included in the analyses. Mean average glucose was 98 to 99 mg/dL (5.4 to 5.5 mmol/L) for all age groups except those over 60 years, in whom mean average glucose was 104 mg/dL (5.8 mmol/L). The median time between 70 to 140 mg/dL (3.9 to 7.8 mmol/L) was 96% (interquartile range, 93 to 98). Mean within-individual coefficient of variation was 17 ± 3%. Median time spent with glucose levels &gt;140 mg/dL was 2.1% (30 min/d), and median time spent with glucose levels &lt;70 mg/dL (3.9 mmol/L) was 1.1% (15 min/d). Conclusion By assessing across age groups in a healthy, nondiabetic population, normative sensor glucose data have been derived and will be useful as a benchmark for future research studies.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Kuroda ◽  
M Kawata ◽  
A Matsuura ◽  
K Adachi ◽  
Y Hirayama ◽  
...  

Abstract Background There has been growing evidence that the glucose fluctuation is an important contributing factor to the development of coronary artery disease. However, whether large glucose fluctuation, especially hypoglycemia, may be associated with acute myocardial infarction (AMI) remains largely unknown. Aim As new continuous glucose monitoring (CGM) has recently become available to evaluate glucose fluctuation from immediately after an emergency visit, this study sought to investigate glucose fluctuation and the occurrence of hypoglycemia in patients with AMI. Methods In this prospective study, 93 consecutive patients with AMI from April 2017 to November 2018 were enrolled. Subcutaneous interstitial glucose levels were monitored from emergency room to discharge using the CGM System. Based on the CGM data, 24-h mean glucose levels, the time in hyperglycemia and hypoglycemia and the occurrence of hypoglycemia, defined as less than 70 mg/dL, were measured, and the mean amplitude of glycemic excursions (MAGE) were calculated. Results The majority of patients [n=57, 61% (non-DM)] did not have diabetes and 36 patients had diabetes (DM). The occurrence of hypoglycemia within 24 hours after admission was observed in 49 patients [DM: n=11 (30.6%), non-DM: n=38 (66.7%)]. MAGE within 24 hours after admission were 100±47 in DM patients and 67±20 in non-DM patients. The mean time in hypoglycemia within 24 hours after admission was 148 minutes [DM: 100±260 minutes, non-DM: 178±287 minutes]. The occurrence of hypoglycemia during a hospital stay (mean 11.5 days) was detected in 76 patients [DM: n=28 (77.8%), non-DM: n=48 (84.2%)]. Representative case of hypoglycemia Conclusion Not only in DM patients but also in non-DM patients with AMI, large glucose fluctuation and high incidence of hypoglycemia were observed using new CGM system. Further investigations should address the rationale for the early detection and control of glucose fluctuation for AMI patients.


2021 ◽  
Vol 8 (16) ◽  
pp. 1-142
Author(s):  
Kathryn Beardsall ◽  
Lynn Thomson ◽  
Catherine Guy ◽  
Simon Bond ◽  
Annabel Allison ◽  
...  

Background Hyperglycaemia and hypoglycaemia are common in preterm infants and are associated with increased mortality and morbidity. Continuous glucose monitoring is widely used to target glucose control in adults and children, but not in neonates. Objective To evaluate the role of continuous glucose monitoring in the preterm infant. Design The REAl-time Continuous glucose moniToring in neonatal intensive care project combined (1) a feasibility study, (2) a multicentre randomised controlled trial and (3) a pilot of ‘closed-loop’ continuous glucose monitoring. The feasibility study comprised a single-centre study (n = 20). Eligibility criteria included a birthweight ≤ 1200 g and aged ≤ 48 hours. Continuous glucose monitoring was initiated to support glucose control. The efficacy and safety outcomes guided the design of the randomised controlled trial. The randomised controlled trial comprised a European multicentre trial (n = 182). Eligibility criteria included birthweight ≤ 1200 g and aged ≤ 24 hours. Exclusion criteria included any lethal congenital abnormality. Continuous glucose monitoring was initiated to support glucose control within 24 hours of birth. In the intervention group, the continuous glucose monitoring sensor provided real-time data on glucose levels, which guided clinical management. In control infants, the continuous glucose monitoring data were masked, and glucose level was managed in accordance with standard clinical practice and based on the blood glucose levels. The primary outcome measure was the percentage of time during which the sensor glucose level was within the target range of 2.6–10 mmol/l. Secondary outcome measures included mean sensor glucose level, the percentage of time during which the sensor glucose level was within the target range of 4–8 mmol/l, the percentage of time during which the sensor glucose level was in the hyperglycaemic range (i.e. > 15 mmol/l) and sensor glucose level variability. Safety outcomes included hypoglycaemia exposure. Acceptability assessment and health economic analyses were carried out and further exploratory health outcomes were explored. The mean percentage of time in glucose target range of 2.6–10 mmol/l was 9% higher in infants in the continuous glucose monitoring group (95% confidence interval 3% to 14%; p = 0.002), and the mean time in the target range of 4–8 mmol/l was 12% higher in this group (95% confidence interval 4% to 19%; p = 0.004). There was no difference in the number of episodes of hypoglycaemia. Exploratory outcomes showed a reduced risk of necrotising enterocolitis in the intervention arm (odds ratio 0.33, 95% confidence interval 0.13 to 0.78; p = 0.01). Health economic analyses demonstrated that continuous glucose monitoring was cost-effective on the basis of the cost per additional case of adequate glucose control between 2.6 and 10 mmol/l. The ‘closed-loop’ study was a single-center pilot study, with eligibility criteria including a birthweight of ≤ 1200 g and aged ≤ 48 hours. Infants underwent continuous glucose monitoring for the first week of life (n = 21), with those in the intervention group receiving closed-loop insulin delivery between 48 and 72 hours of age. The primary outcome of percentage of time in the target range (i.e. sensor glucose 4–8 mmol/l) increased from a median of 26% (interquartile range 6–64%) to 91% (interquartile range 78–99%) during closed-loop insulin delivery (p < 0.001). Limitations These studies have not defined the optimal targets for glucose control or the best strategies to achieve them in these infants. Future work Studies are needed to evaluate the longer-term impact of targeting glucose control on clinical outcomes. Conclusions Continuous glucose monitoring in extremely preterm infants can improve glucose control, with closed-loop insulin delivery having further potential to target glucose levels. Staff and parents felt that the use of continuous glucose monitoring improved care and the results of the health economic evaluation favours the use of continuous glucose monitoring. Trial registration Current Controlled Trials ISRCTN12793535. Funding This project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a MRC and National Institute for Health Research (NIHR) partnership. This will be published in full in Efficacy and Mechanism Evaluation; Vol. 8, No. 16. See the NIHR Journals Library website for further project information. Medtronic plc provided some MiniMed™ 640G systems and Nova Biomedical (Waltham, MA, USA) provided point-of-care devices.


2021 ◽  
pp. 1-9
Author(s):  
Tobias Bomholt ◽  
Marianne Rix ◽  
Thomas Almdal ◽  
Filip K. Knop ◽  
Susanne Rosthøj ◽  
...  

<b><i>Introduction:</i></b> The accuracy of hemoglobin A1c (HbA1c) as a glycemic marker in patients with type 2 diabetes (T2D) receiving hemodialysis (HD) remains unknown. To assess accuracy, we compared HbA1c and fructosamine levels with interstitial glucose measured by continuous glucose monitoring (CGM) in patients with T2D receiving HD. <b><i>Methods:</i></b> Thirty patients in the HD group and 36 patients in the control group (T2D and an estimated glomerular filtration rate &#x3e;60 mL/min/1.73 m<sup>2</sup>) completed the study period of 17 weeks. CGM (Ipro2<sup>®</sup>, Medtronic) was performed 5 times for periods of up to 7 days (with 4-week intervals) during a 16-week period. HbA1c (mmol/mol), the estimated mean plasma glucose from HbA1c (eMPGA1c [mmol/L]) and fructosamine (μmol/L) was measured at week 17 and compared with mean sensor glucose levels from CGM. <b><i>Findings:</i></b> In the HD group, mean sensor glucose was 1.4 mmol/L (95% confidence interval [CI]: 1.0–1.8) higher than the eMPGA1c, whereas the difference for controls was 0.1 mmol/L (95% CI: −0.1–[0.4]; <i>p</i> &#x3c; 0.001). Adjusted for mean sensor glucose, HbA1c was lower in the HD group (−7.3 mmol/mol, 95% CI: −10.0–[−4.7]) than in the control group (<i>p</i> &#x3c; 0.001), with no difference detected for fructosamine (<i>p</i> = 0.64). <b><i>Discussion:</i></b> HbA1c evaluated by CGM underestimates plasma glucose levels in patients receiving HD. The underestimation represents a clinical challenge in optimizing glycemic control in the HD population. Fructosamine is unaffected by the factors affecting HbA1c and appears to be more accurate for glycemic monitoring. CGM or fructosamine could thus complement HbA1c in obtaining more accurate glycemic control in this patient group.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Mohammad Arifur Rahman

This article discusses the fundamental characteristics of measured glucose levels and predicted glycated hemoglobin A1c (HbA1c) values among three sets of collected data, measured finger-piercing and continuous glucose monitoring (CGM) sensor device collected glucose levels at 15-minute (15-min) and 5-minute (5-min) intervals. The average glucose (in milligram per deciliter-mg/dL) is listed below: Finger glucose: 109 mg/dL (100%) Sensor at 15-min: 120 mg/dL (109%) Sensor at 5-min: 117 mg/dL (107%) Using candlestick chart, the comparison of average glucoses during this period between two sensor glucose (mg/dL) data (15-min/5-min) are as follows: Open glucose: 108/111 Close glucose: 115/115 Maximum (max) glucose: 170 /175 Minimum (min) glucose: 85/83 Average glucose: 120/117 Additional analysis of time above range (TAR)≥140 mg/dL for hyperglycemia, time within the range (TIR) from 70-140 mg/dL for normal, time below range (TBR)≤70 mg/dL for hypoglycemia based on two sensor candlesticks revealing the following information in a specific format of TAR%/ TIR%/TBR%. 15-min:18.3%, 80.5%, 1.2% 5-min: 17.0%, 81.9%, 1.1% By evaluating the results of the TIR analysis, the 5-min glucose levels appear to be marginally healthier (1.4%) than the 15-min ones. During the coronavirus pandemic (COVID 19) quarantine period, the author lived a rather unique lifestyle which is extremely calm with regular routines, such as eating home-cooked meals and exercising on a regular basis. As a result, his HbA1c has decreased from 6.6% to 6.3% with an average A1c of 6.4% without taking any diabetes medications. However, these three different measurement methods still provide three different sets of glucoses levels which are within a 10% margin of differences, while the HbA1c values are particularly close to each other between the finger-piercing and CGM 15-min.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Tobias Bomholt ◽  
Marianne Rix ◽  
Thomas Peter Almdal ◽  
Filip K Knop ◽  
Susanne Rosthøj ◽  
...  

Abstract Background and Aims The reliability of haemoglobin A1c (HbA1c) as a glycaemic marker in patients receiving haemodialysis (HD) remains unknown. To assess accuracy, we compared HbA1c and fructosamine levels with interstitial glucose levels measured by continuous glucose monitoring (CGM) in patients with type 2 diabetes receiving HD. Method The HD group (maintenance HD and type 2 diabetes) comprised 30 patients who completed the study period of 17 weeks; the control group (type 2 diabetes and an estimated glomerular filtration rate &gt;60 mL/min/1.73 m2) comprised 36 individuals. CGM (Ipro2®, Medtronic) for periods up to seven days was performed five times (with four weeks intervals) during a 16-week period. HbA1c and fructosamine were measured at week 17. The mean sensor glucose from CGM was compared with the measured HbA1c, its estimated mean blood glucose (eMBGA1c) and fructosamine levels. Results In the HD group, the mean sensor glucose from CGM was 1.4 (95% confidence interval [CI]: 1.0–1.8) mmol/L higher than the eMBGA1c, whereas the difference was 0.1 mmol/L (95% CI: -0.1–[0.4]; P&lt;0.001) in the control group. Adjusted for the mean sensor glucose, HbA1c was -7.3 (95% CI: -10.0–[-4.7]) mmol/mol lower in the HD group than in controls (P&lt;0.001), whereas no difference was detected for fructosamine (P=0.64). Conclusion HbA1c evaluated by CGM underestimates mean blood glucose levels in patients receiving maintenance HD; fructosamine appears to be more accurate. CGM-assessed blood glucose could complement or replace HbA1c in patients where HbA1c underestimates blood glucose levels.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Gerald C Hsu

This article discusses the fundamental characteristics of measured glucose levels and predicted glycated hemoglobin A1c (HbA1c) values among three sets of collected data, measured finger-piercing and continuous glucose monitoring (CGM) sensor device collected glucose levels at 15-minute (15-min) and 5-minute (5-min) intervals. The average glucose (in milligram per deciliter-mg/dL) is listed below: Finger glucose: 109 mg/dL (100%) Sensor at 15-min: 120 mg/dL (109%) Sensor at 5-min: 117 mg/dL (107%) Using candlestick chart, the comparison of average glucoses during this period between two sensor glucose (mg/dL) data (15-min/5-min) are as follows: Open glucose: 108/111 Close glucose: 115/115 Maximum (max) glucose: 170 /175 Minimum (min) glucose: 85/83 Average glucose: 120/117 Additional analysis of time above range (TAR)≥140 mg/dL for hyperglycemia, time within the range (TIR) from 70-140 mg/dL for normal, time below range (TBR)≤70 mg/dL for hypoglycemia based on two sensor candlesticks revealing the following information in a specific format of TAR%/ TIR%/TBR%. 15-min:18.3%, 80.5%, 1.2% 5-min: 17.0%, 81.9%, 1.1% By evaluating the results of the TIR analysis, the 5-min glucose levels appear to be marginally healthier (1.4%) than the 15-min ones. During the coronavirus pandemic (COVID 19) quarantine period, the author lived a rather unique lifestyle which is extremely calm with regular routines, such as eating home-cooked meals and exercising on a regular basis. As a result, his HbA1c has decreased from 6.6% to 6.3% with an average A1c of 6.4% without taking any diabetes medications. However, these three different measurement methods still provide three different sets of glucoses levels which are within a 10% margin of differences, while the HbA1c values are particularly close to each other between the finger-piercing and CGM 15-min.


Nephron ◽  
2021 ◽  
pp. 1-7
Author(s):  
Tobias Bomholt ◽  
Bo Feldt-Rasmussen ◽  
Rizwan Butt ◽  
Rikke Borg ◽  
Mir Hassan Sarwary ◽  
...  

<b><i>Introduction:</i></b> Shortened erythrocyte life span and erythropoietin-stimulating agents may affect hemoglobin A<sub>1c</sub> (HbA<sub>1c</sub>) levels in patients receiving peritoneal dialysis (PD). We compared HbA<sub>1c</sub> with interstitial glucose measured by continuous glucose monitoring (CGM) in patients with type 2 diabetes receiving PD. <b><i>Methods:</i></b> Fourteen days of CGM (Ipro2, Medtronic) were performed in 23 patients with type 2 diabetes receiving PD and in 23 controls with type 2 diabetes and an estimated glomerular filtration rate over 60 mL/min/1.73 m<sup>2</sup>. Patients were matched on gender and age (±5 years). HbA<sub>1c</sub> (mmol/mol), its derived estimate of mean plasma glucose (eMPG<sub>A1c</sub>) (mmol/L), and fructosamine (µmol/L) were measured at the end of the CGM period and compared with the mean sensor glucose (mmol/L) from CGM. <b><i>Results:</i></b> In the PD group, mean sensor glucose was 0.98 (95% con­fidence interval (CI): 0.43–1.54) mmol/L higher than the eMPG<sub>A1c</sub> compared with the control group (<i>p</i> = 0.002) where glucose levels were nearly identical (−0.05 (95% CI: −0.35–0.25) mmol/L). A significant association was found between fructosamine and mean sensor glucose using linear regression with no difference between slopes (<i>p</i> = 0.89) or y-intercepts (<i>p</i> = 0.28). <b><i>Discussion/Conclusion:</i></b> HbA<sub>1c</sub> underestimates mean plasma glucose levels in patients with type 2 diabetes receiving PD. However, the clinical significance of this finding is undetermined. Fructosamine seems to more accurately reflect glycemic status. CGM or fructosamine could complement HbA<sub>1c</sub> to increase the accuracy of glycemic monitoring in the PD population.


Sign in / Sign up

Export Citation Format

Share Document