scholarly journals Pathogenicity of FtsK mutant of avian pathogenic Escherichia coli

2016 ◽  
Vol 60 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Xiaojing Xu ◽  
Xiang Chen ◽  
Song Gao ◽  
Lixiang Zhao

Abstract Introduction: Avian pathogenic Escherichia coli (APEC) is a leading cause of extraintestinal infection and heavy economic losses. Imparting immunity after vaccination with live attenuated strain vaccination is an ideal strategy for infection control. This study considers an FtsK knockout mutant strain as a candidate. Material and Methods: An FtsK knockout mutant of APEC strain E058 was constructed and the pathogenicity of the mutant and wild-type strains was further evaluated in chickens. Results: The 50% lethal doses of each strain for one-day-old specific-pathogen-free (SPF) chickens challenged experimentally via trachea were 105.5 and 107.0 colony-forming units (CFU) respectively. Chickens challenged with the wild-type strain exhibited typical signs and lesions of avian colibacillosis, while those inoculated with the mutant strain showed mild pericarditis and pulmonary congestion. The growth rate of the FtsK mutant strain was much slower than the wild-type strain in the heart, spleen, liver, and lung of infected chickens. Conclusion: These results indicated that the APEC FtsK mutant can be attenuated for chickens, and that this mutant has the potential for the development of an APEC vaccine.

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1658
Author(s):  
Mei Xue ◽  
Yating Xiao ◽  
Dandan Fu ◽  
Muhammad Akmal Raheem ◽  
Ying Shao ◽  
...  

Avian pathogenic Escherichia coli (APEC) is the leading cause of systemic infections in poultry worldwide and has a hidden threat to public health. Escherichia coli type three secretion system 2 (ETT2), similar to the Salmonella pathogenicity island SPI1, is widely distributed in APEC and associated with virulence. The function of YqeI, which is one of the hypothetical transcriptional regulators locating at the ETT2 locus of APEC, is unknown. In this study, we successfully obtained the mutant strain AE81ΔyqeI of the wild type strain AE81 and performed the transcriptional profiling assays. Additionally, the transcriptional sequencing results revealed that YqeI influenced localization, locomotion and biological adhesion and so on. The transmission electron microscope observation showed that the wild type strain AE81 possessed long curved flagella, whereas the mutant strain AE81ΔyqeI hardly had any. The strain AE81ΔyqeI exhibited lower motility than AE81 after culturing the dilute bacterial suspension on a semisolid medium. It was also found that the survival ability of AE81ΔyqeI weakened significantly when AE81ΔyqeI was cultured with 0%, 10%, 20%, 30%, 40% and 50% SPF serum in PBS, and AE81ΔyqeI had decreased adherence to DF-1 cells compared with AE81 in the bacterial adhesion assay. The bacterial colonization assay indicated that the virulence of AE81ΔyqeI was reduced in the heart, liver, spleen, and lung. These results confirmed that the transcription regulator YqeI is involved in APEC’s pathogenicity, and this study provides clues for future research.


Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Eric L. Buckles ◽  
Xiaolin Wang ◽  
C. Virginia Lockatell ◽  
David E. Johnson ◽  
Michael S. Donnenberg

The phoU gene is the last cistron in the pstSCAB–phoU operon and functions as a negative regulator of the Pho regulon. The authors previously identified a phoU mutant of extraintestinal pathogenic Escherichia coli strain CFT073 and demonstrated that this mutant was attenuated for survival in the murine model of ascending urinary tract infection. It is hypothesized that the PhoU protein might serve as a urovirulence factor by indirectly affecting the expression of virulence-related genes. In this study, the phoU mutant was further characterized and PhoU was confirmed as a virulence factor. Western blot analysis demonstrated that insertion of the transposon in the phoU gene disrupted the expression of PhoU. The phoU mutant had derepressed alkaline phosphatase activity under phosphate-excess and -limiting conditions. In single-challenge murine ascending urinary tract infection experiments, quantitative cultures of urine, bladder and kidney revealed no significant differences between the phoU mutant strain and the wild-type strain CFT073. However, in competitive colonization experiments, the phoU mutant strain was significantly out-competed by the wild-type strain in the kidneys and urine and recovered in lower amount in the bladder. Complementation of the phoU mutant with a plasmid containing the wild-type phoU gene restored the expression of PhoU and alkaline phosphate activity to wild-type levels and no significant difference in colonization was observed between the phoU mutant containing the complementing plasmid and wild-type in competitive colonization experiments. In human urine, the phoU mutant and wild-type grew comparably when inoculated independently, indicating that the attenuation observed was not due to a general growth defect. However, as observed in vivo, the wild-type out-competed the phoU mutant in competition growth experiments in human urine. These data indicate that PhoU contributes to efficient colonization of the murine urinary tract and add PhoU to a short list of confirmed urovirulence factors.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zui Wang ◽  
Li Li ◽  
Peng Liu ◽  
Chen Wang ◽  
Qin Lu ◽  
...  

Abstract Background Pasteurella multocida is responsible for a highly infectious and contagious disease in birds, leading to heavy economic losses in the chicken industry. However, the pathogenesis of this disease is poorly understood. We recently identified an aspartate ammonia-lyase (aspA) in P. multocida that was significantly upregulated under iron-restricted conditions, the protein of which could effectively protect chicken flocks against P. multocida. However, the functions of this gene remain unclear. In the present study, we constructed aspA mutant strain △aspA::kan and complementary strain C△aspA::kan to investigate the function of aspA in detail. Result Deletion of the aspA gene in P. multocida resulted in a significant reduction in bacterial growth in LB (Luria-Bertani) and MH (Mueller-Hinton) media, which was rescued by supplementation with 20 mM fumarate. The mutant strain △aspA::kan showed significantly growth defects in anaerobic conditions and acid medium, compared with the wild-type strain. Moreover, growth of △aspA::kan was more seriously impaired than that of the wild-type strain under iron-restricted conditions, and this growth recovered after supplementation with iron ions. AspA transcription was negatively regulated by iron conditions, as demonstrated by quantitative reverse transcription-polymerase chain reaction. Although competitive index assay showed the wild-type strain outcompetes the aspA mutant strain and △aspA::kan was significantly more efficient at producing biofilms than the wild-type strain, there was no significant difference in virulence between the mutant and the wild-type strains. Conclusion These results demonstrate that aspA is required for bacterial growth in complex medium, and under anaerobic, acid, and iron-limited conditions.


Microbiology ◽  
2014 ◽  
Vol 160 (3) ◽  
pp. 488-495 ◽  
Author(s):  
Yan Wang ◽  
Xi Li ◽  
Wenyan Zhang ◽  
Xiuwen Zhou ◽  
Yue-zhong Li

Myxococcus xanthus DK1622 possesses two copies of the groEL gene: groEL1, which participates in development, and groEL2, which is involved in the predatory ability of cells. In this study, we determined that the groEL2 gene is required for the biosynthesis of the secondary metabolite myxovirescin (TA), which plays essential roles in predation. The groEL2-knockout mutant strain was defective in producing a zone of inhibition and displayed decreased killing ability against Escherichia coli, while the groEL1-knockout mutant strain exhibited little difference from the wild-type strain DK1622. HPLC revealed that deletion of the groEL2 gene blocked the production of TA, which was present in the groEL1-knockout mutant. The addition of exogenous TA rescued the inhibition and killing abilities of the groEL2-knockout mutant against E. coli. Analysis of GroEL domain-swapping mutants indicated that the C-terminal equatorial domain of GroEL2 was essential for TA production, while the N-terminal equatorial or apical domains of GroEL2 were not sufficient to rescue TA production of the groEL2 knockout.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Ang Li ◽  
Tingting Hu ◽  
Hangqi Luo ◽  
Nafee-Ul Alam ◽  
Jiaqi Xin ◽  
...  

ABSTRACT Gellan gum is a microbial exopolysaccharide, produced after aerobic fermentation using the Gram-negative bacterium strain Sphingomonas elodea ATCC 31461. Due to its unique structure and excellent physical characteristics, gellan gum has a broad range of applications in food, pharmaceutical, and other industries where it is used for stabilizing, emulsifying, thickening, and suspending. During the fermentative production of gellan, strain ATCC 31461 also accumulates large amounts of the metabolic by-products yellow carotenoid pigments and poly-β-hydroxybutyrate (PHB), which is decreasing the gellan production and increasing processing costs. A pigment PHB-free mutant was obtained by knocking out the phytoene desaturase gene (crtI) in the carotenoid biosynthetic pathway and the phaC gene, encoding a PHB synthase for the polymerization of PHB. Unfortunately, the double gene knockout mutant produced only 0.56 g liter−1 gellan. Furthermore, blocking PHB and carotenoid synthesis resulted in the accumulation of pyruvate, which reduced gellan production. To elevate gellan production, combined UV irradiation and ethyl methanesulfonate (EMS) mutagenesis treatment were used. A mutant strain with the same level of pyruvate as that of the wild-type strain and higher gellan production was isolated (1.35 g liter−1, 132.8% higher than the double gene knockout mutant and 14.4% higher than the wild-type strain ATCC 31461). In addition, a new gellan gum recovery method based on the new mutant strain was investigated, in which only 30% isopropanol was required, which is twice for the wild-type strains, and the performance of the final product was improved. Thus, the mutant strain could be an ideal strain for the commercial production of gellan. IMPORTANCE A carotenoid- and PHB-free double gene knockout strain mutant was constructed to simplify the purification steps normally involved in gellan production. However, the production of gellan gum was unexpectedly reduced. A mutant with 14.4% higher gellan production than that of the wild-type strain was obtained and isolated after employing UV and EMS combined mutagenesis. Based on this high-yield and low-impurity-producing mutant, a new recovery method requiring less organic solvent and fewer operating steps was developed. This method will effectively reduce the production costs and improve the economic benefits of large-scale gellan production.


2001 ◽  
Vol 183 (14) ◽  
pp. 4127-4133 ◽  
Author(s):  
Ana Segura ◽  
Estrella Duque ◽  
Ana Hurtado ◽  
Juan L. Ramos

ABSTRACT Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow in the presence of 1% (vol/vol) toluene in the culture medium. Random mutagenesis with mini-Tn5-′phoA-Km allowed us to isolate a mutant strain (DOT-T1E-42) that formed blue colonies on Luria-Bertani medium supplemented with 5-bromo-4-chloro-3-indolylphosphate and that, in contrast to the wild-type strain, was unable to tolerate toluene shocks (0.3%, vol/vol). The mutant strain exhibited patterns of tolerance or sensitivity to a number of antibiotics, detergents, and chelating agents similar to those of the wild-type strain. The mutation in this strain therefore seemed to specifically affect toluene tolerance. Cloning and sequencing of the mutation revealed that the mini-Tn5-′phoA-Km was inserted within the fliPgene, which is part of the fliLMNOPQRflhBA cluster, a set of genes that encode flagellar structure components. FliP is involved in the export of flagellar proteins, and in fact, theP. putida fliP mutant was nonmotile. The finding that, after replacing the mutant allele with the wild-type one, the strain recovered the wild-type pattern of toluene tolerance and motility unequivocally assigned FliP a function in solvent resistance. An flhB knockout mutant, another gene component of the flagellar export apparatus, was also nonmotile and hypersensitive to toluene. In contrast, a nonpolar mutation at the fliLgene, which encodes a cytoplasmic membrane protein associated with the flagellar basal body, yielded a nonmotile yet toluene-resistant strain. The results are discussed regarding a possible role of the flagellar export apparatus in the transport of one or more proteins necessary for toluene tolerance in P. putida DOT-T1E to the periplasm.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


2003 ◽  
Vol 71 (5) ◽  
pp. 2350-2355 ◽  
Author(s):  
M. M. Patterson ◽  
P. W. O'Toole ◽  
N. T. Forester ◽  
B. Noonan ◽  
T. J. Trust ◽  
...  

ABSTRACT Helicobacter mustelae, the gastric pathogen of ferrets, produces an array of surface ring structures which have not been described for any other member of the genus Helicobacter, including H. pylori. The unique ring structures are composed of a protein named Hsr. To investigate whether the Hsr rings are important for colonization of the ferret stomach, ferrets specific pathogen free for H. mustelae were inoculated with an Hsr-deficient mutant strain or the wild-type H. mustelae strain. Quantitative cultures from antral biopsy specimens obtained at 3, 6, and 9 weeks postinoculation demonstrated no significant difference in the levels of bacteria in the ferrets that received the Hsr-negative strain and the ferrets infected with the parent strain. However, when the ferrets were biopsied at 12 and 15 weeks and necropsied at 18 weeks after infection, the levels of bacteria of the Hsr-negative strain in the stomach antrum were significantly reduced. This decline contrasted the robust antral colonization by the wild-type strain. The Hsr-negative strain did not efficiently colonize the gastric body of the study ferrets. Histological examination at 18 weeks postinoculation revealed minimal gastric inflammation in the animals that received the mutant H. mustelae strain, a finding consistent with its waning infection status, whereas lesions characteristic of helicobacter infection were present in ferrets infected with the wild-type strain. Scant colonization by the Hsr-negative H. mustelae strain at the end of the 18-week study, despite initial successful colonization, indicates an inability of the mutant to persist, perhaps due to a specific host response.


2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document