scholarly journals Light requirements of water lobelia (Lobelia dortmanna L.)

2017 ◽  
Vol 17 (4) ◽  
pp. 171-182 ◽  
Author(s):  
Dariusz Borowiak ◽  
Katarzyna Bociąg ◽  
Kamil Nowiński ◽  
Magdalena Borowiak

Abstract Maximum depth of colonization (zC) and total area covered by a population of Lobelia dortmanna, as well as underwater light regime were studied in 25 soft water lobelia lakes in north-western Poland. Variations in underwater light conditions among the lakes were described by Secchi disc depths (zSD), and by attenuation coefficients of irradiance within photosynthetically active radiation range (Kd,PAR), and euphotic zone depths (zEU) derived from photometric measurements conducted twice a year (in midspring and midsummer) during the period 2014–2015. Maximum depth of colonization of water lobelia ranged from 0.1 to 2.2 m (median zC = 0.8 m; mean zC = 1.0 m). Nine lakes showed the relative coverage of the littoral zone (RCLZ) by L. dortmanna to be greater than the mean value, which was 4.8%. Studies showed that light requirements of water lobelia increase when the maximum depth of colonization also increases. This pattern could be partially related to the greater energy needs of deeper growing individuals due to enlarged seed production and their incubation, and for the creation of much heavier inflorescences. Assessment of the light requirements of L. dortmanna along the depth gradient indicates that relative irradiance (percentage of subsurface irradiance of PAR) should be at the level of: (i) 47–50% (annual total of quantum irradiance 3083–3280 mol m−2 yr−2) for plants growing within a depth range of 2.0–2.5 m; (ii) 44–47% (2886–3083 mol m−2yr−1) for plants growing within a depth range of 1.5–2.0 m; (iii) 41–44% (2690–2886 mol m−2yr−2) for plants growing within a depth range of 1.0–1.5 m; and (iv) 34–41% (2230–2690 mol m−1 yr−1) for those growing in the littoral zone at a depth of between 0.5 and 1.0 m. In average conditions in the Pomeranian lakes, the maximum depth of colonization by L. dortmanna accounts for approximately a third of the Secchi disc depth and a fifth of the depth of the euphotic zone with irradiance of PAR at zC equal to about 43% of subsurface irradiance. It has also been demonstrated that the light factor is a crucial one that limits the absolute maximum depth of lobelia population occurrence in Pomeranian lakes. The cleanest and most transparent lakes of this region have light attenuation coefficients (Kd,PAR) within the range of 0.35–0.42 m−1, which corresponds to the maximum colonization depths of 1.8–2.2 m.

Author(s):  
Terriss A. Walker

Re-examination of the original and subsequent data from Secchi disc studies leads to a revised constant in the light attenuation formula applicable to general field-work.In theory, the depth at which a Secchi disc disappears from an observer's sight, Ds, is inversely proportional to the sum of attenuation coefficients for diffuse and collimated photopic light (Tyler, 1968). By definition, photopic light is measured by a sensor with the same spectral response curve as the normal human eye. In practice, the usefulness of the theoretical equation is restricted. More commonly, a simple empirically derived formula is used to estimate the attenuation coefficient for diffuse downwelling light, k, directly from Ds. Poole & Atkins (1929), in their pioneering work on light penetration in the sea, derived the relationship k × Ds – 17 for water in the English Channel. This formula is used extensively by workers who are unable to measure k directly and it is given regularly in oceanography and marine biology texts. More recently, a number of investigators have proposed alternative equations relating k to Ds in different regional seas (Table 1). However, Idso & Gilbert (1974) have fitted data of some of these authors, together with measurements of their own, to the original Poole and Atkins formula with good correlation. They suggest that k × Ds = 1.7 is a universal approximation for all natural waters. In view of the continuing importance of the Secchi disc as a measure of underwater light for primary production calculations and other studies, a universal formula is certainly desirable. However, re-examination of the Poole & Atkins measurements has revealed an error in the method of calculation of k.


1996 ◽  
Vol 47 (6) ◽  
pp. 763 ◽  
Author(s):  
EG Abal ◽  
WC Dennison

Correlations between water quality parameters and seagrass depth penetration were developed for use as a biological indicator of integrated light availability and long-term trends in water quality. A year-long water quality monitoring programme in Moreton Bay was coupled with a series of seagrass depth transects. A strong gradient between the western (landward) and eastern (seaward) portions of Moreton Bay was observed in both water quality and seagrass depth range. Higher concentrations of chlorophyll a, total suspended solids, dissolved and total nutrients, and light attenuation coefficients in the water column and correspondingly shallower depth limits of the seagrass Zostera capricorni were observed in the western portions of the bay. Relatively high correlation coefficient values (r2 > 0.8) were observed between light attenuation coefficient, total suspended solids, chlorophyll a, total Kjeldahl nitrogen and Zostera capricorni depth range. Low correlation coefficient values (r2 < 0.8) between seagrass depth range and dissolved inorganic nutrients were observed. Seagrasses had disappeared over a five-year period near the mouth of the Logan River, a turbid river with increased land use in its watershed. At a site 9 km from the river mouth, a significant decrease in seagrass depth range corresponded to higher light attenuation, chlorophyll a, total suspended solids and total nitrogen content relative to a site 21 km from the river mouth. Seagrass depth penetration thus appears to be a sensitive bio-indicator of some water quality parameters, with application for water quality management.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1464
Author(s):  
Leon Katona ◽  
Yvonne Vadeboncoeur ◽  
Christopher T. Nietch ◽  
Katie Hossler

Recent studies suggest that photophysiological parameters for intact substrates with depth (e.g., periphytic biofilms, microphytobenthos) are overestimated by pulse-amplitude modulated (PAM) fluorometry. This overestimation results from depth-integration effects, following the activation of deeper photosynthesizing layers by an attenuated light signal. To mitigate this error, we propose a novel slide-based thin-film technique in which fluorescence is measured on a vertically representative subsample of the biofilm, spread evenly on a microscope slide. We compared bias and precision for photosynthetic parameters estimated through conventional PAM fluorometry on intact biofilms and through our novel slide-based technique, both theoretically and empirically. Numerical simulations confirmed the consistent overestimation of key parameters for intact biofilms, with relative errors up to 145%, compared to, at most, 52% on thin films. Paired empirical observations likewise demonstrated that estimates based on intact biofilms were consistently higher (up to 248%, p<0.001) than estimates from thin films. Numerical simulation suggested greater precision with the slide-based technique for homogeneous biofilms, but potentially less precision for heterogeneous biofilms with improper subsampling. Our empirical comparison, however, demonstrated some improvement in precision with the slide-based technique (e.g., the coefficient of variation for the maximum electron transport rate was reduced 30%, p=0.009). We recommend the use of the slide-based technique, particularly for biofilms that are thick or have small light attenuation coefficients. Care should be taken, however, to obtain vertically representative subsamples of the biofilm for measurement.


2008 ◽  
Vol 16 (21) ◽  
pp. 16581 ◽  
Author(s):  
Bradley Penta ◽  
Zhongping Lee ◽  
Raphael M. Kudela ◽  
Sherry L. Palacios ◽  
Deric J. Gray ◽  
...  

1994 ◽  
Vol 45 (5) ◽  
pp. 847 ◽  
Author(s):  
BE Sherman ◽  
IT Webster

A computer model was used to explore the relationship between buoyancy and the light-limited growth of phytoplankton in very turbid waters. The model simulates the potential growth of phytoplankton as a function of flotation speed, using field observations of photosynthetically active radiation, wind speed, surface-layer thickness (from water-column temperature data), and light attenuation made at Rushy Billabong on the River Murray from 28 November 1991 to 26 March 1992. A unique feature of the model is the simulation of the development and dispersal of surface scums as a function of wind speed. Under nutrient-replete conditions, the model predicted that phytoplankton with a flotation speed of 1-10 m day-1 (typical of Anabaena flos-aquae and Microcystis aeruginosa) would grow up to four times faster than would neutrally buoyant phytoplankton with the same maximum specific growth rate. In the shallow system modelled, high flotation speeds allowed a large proportion of the total population to rise into the euphotic zone shortly after the onset of stratification each day. Surface scums played an important role in maintaining the more buoyant phytoplankton populations close to the water surface. Under the very turbid conditions in the billabong (100 nephelometric turbidity units), self-shading became significant only when the mean chlorophyll concentration in the water column approached 100 mg chla m-3.


2008 ◽  
Vol 30 (4) ◽  
pp. 627-632 ◽  
Author(s):  
Hilmar Hofmann ◽  
Andreas Lorke ◽  
Frank Peeters

2012 ◽  
Vol 24 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Luciana Gomes Barbosa ◽  
Francisco Antonio Rodrigues Barbosa ◽  
Carlos Eduardo de Mattos Bicudo

AIM: chemical stratification and the patterns of light limitation and nutrients of two natural lakes, one shallow and the other one deep, were comparatively evaluated, both lakes located in the southeast Brazil. METHODS: pH, electrical conductivity, dissolved oxygen, total dissolved solids and nutrients were monthly collected during 5 consecutive years at the vertical profile of the two lakes. RESULTS: multivariate analysis indicated that the long thermal stratification period favored the occurrence of chemical stratification in the two lakes. However, in the deeper lake the stratified thermal profile with high hypolimnetic nutrient concentration, electrical conductivity, total dissolved solids and redox potential indicated that the mixing was not complete even during the annual circulation period, suggesting a slight meromixis and a high chemical stability at the hypolimnion. In the shallower lake, high light attenuation and high availability of nitrogen forms (mainly N-NH4) and phosphorus was observed along the water column, even during stratification. In the deeper lake, N and P co-limitation and low light attenuation coefficients were detected. CONCLUSION: thermal and chemical stratification patterns indicated that the Carioca lake is a shallow, turbid, nutrient rich, whereas the Dom Helvecio lake is a deep, clear, oligotrophic system with a tendency towards meromixis and the isolation of solutes in the hypolimnion. Consequently, meromixis was compared to a "hypolimnetic memory", which was defined, in the case of the deeper lake, as the maintenance of the chemical stratification along the years, during the lake thermal circulation period.


2006 ◽  
Vol 3 (3) ◽  
pp. 449-474
Author(s):  
V. Kitidis ◽  
G. Uher ◽  
R. C. Upstill-Goddard ◽  
R. F. C. Mantoura ◽  
G. Spyres ◽  
...  

Abstract. We investigated the photoproduction of ammonium (NH4+) in surface waters of the Cyprus gyre in the central Eastern Mediterranean in May 2002, in 8 on deck irradiations with freshly collected, filtered samples. NH4+ photoproduction (photoammonification) increased with time-integrated irradiance during the course of irradiations. Photoammonification rates around local noon were 0.4–2.9 nmol L−1 h−1. Normalised to time integrated irradiance, these rates were 0.9–3.8 pmol L−1 h−1/(W m−2) and were significantly correlated with Chromophoric Dissolved Organic Matter (CDOM) absorbance at 300 nm normalised to Dissolved Organic Carbon (DOC). These results are consistent with the notion that successive CDOM photobleaching in the surface mixed layer results in decreased DOC-normalised light absorbance concurrent with decreased dissolved organic matter reactivity with regard to photochemical NH4+ release. Combining our experimental data with estimates of annual solar irradiance and water column light attenuation yields an annual photoammonification rate for the Cyprus Gyre of 40±17 mmol m−2 a−1, equivalent to ~12±5% of the previously estimated annual nitrogen requirement of new production in this region. Based on this analysis, NH4+ photoproduction makes a small, but significant contribution to the nitrogen budget of the euphotic zone in the oligotrophic Cyprus Gyre.


Sign in / Sign up

Export Citation Format

Share Document