scholarly journals Microwave-assisted synthesis, characterization and photoluminescence of shuttle-like BaMoO4 microstructure

2015 ◽  
Vol 33 (3) ◽  
pp. 537-540 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Budsabong Kuntalue ◽  
Titipun Thongtem ◽  
Somchai Thongtem

Abstract Shuttle-like BaMoO4 microstructure has been successfully synthesized from Ba(N03)2·4H20 and Na2MoO4·2H2O as starting materials in ethylene glycol solvent containing 20 mL 5 M NaOH by microwave radiation at 180 W for 30 min. The as- synthesized BaMoO4 product was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photolumines­cence (PL) spectroscopy. XRD patterns revealed that the products was tetragonal BaMoO4 phase. SEM and TEM characteriza­tion showed that the product had a shuttle-like BaMoO4 microstructure. PL of the shuttle-like BaMoO4 microstructure showed a maximum emission at 466 nm excited by 280 nm wavelength.

2012 ◽  
Vol 31 (6) ◽  
pp. 711-715 ◽  
Author(s):  
Azam Sobhani ◽  
Masoud Salavati-Niasari

AbstractCoSO4ċH2O nanoparticles and barite (BaSO4) microcubes have been prepared by hydrothermal decomposition of new precursors [Co(tsc)2]Cl2 and [Ba(tsc)2]Cl2 (tsc =  thiosemicarbazide), respectively. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. As a comparison between two methods, thermal decomposition of novel precursors in high temperature boiling organic solvents were examined.


2013 ◽  
Vol 32 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Mahdiyeh Esmaeili-Zare ◽  
Masoud Salavati-Niasari ◽  
Davood Ghanbari

AbstractMercury selenide nanostructures were synthesized from the reaction of N, N′-bis(salicylidene)propane-1,3-diamine mercury complex, (Hg(Salpn)) as a novel precursor, via sonochemical method. The effect of different surfactant on the morphology and particle size of the products was investigated. Products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray energy dispersive spectroscopy (EDS).


2008 ◽  
Vol 23 (12) ◽  
pp. 3275-3280 ◽  
Author(s):  
K.H. Lee ◽  
J.Y. Lee ◽  
H.C. Jeon ◽  
T.W. Kang ◽  
H.Y. Kwon ◽  
...  

The (Ga1−xMnx)N nanorods were grown on Al2O3 (0001) substrates by using rf-associated molecular beam epitaxy. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area diffraction pattern (SADP) results showed that the (Ga1−xMnx)N nanorods had (0001) preferential orientations. XRD patterns showed that the (Ga1−xMnx)N nanorods contained a small number of grains with different preferred orientations. High-resolution TEM (HRTEM) images showed that the (Ga1−xMnx)N nanorods consisted of different preferentially oriented grains. The initial formation mechanisms for the (Ga1−xMnx)N nanorods grown on Al2O3 (0001) substrates are described on the basis of the XRD, the TEM, the SADP, and the HRTEM results.


2019 ◽  
Vol 2 (2) ◽  
pp. 65-76
Author(s):  
Tahereh Poursaberi ◽  
Ali Akbar Miran Beigi

This study investigates an application of zinc metalloporphyrin grafted Fe3O4 nanoparticles as a new adsorbent for removal of sulfate ions from wastewaters. The modification of magnetite nanoparticles was conducted by 3-aminopropyltriethoxysilane followed by zinc (II) porphyrin in order to enhance the removal of sulfate ions. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) was used to characterize the synthesized nano sorbent. The effect of important experimental factors such as pH, contact time, sorbent dosage and some co-existing anions present in aqueous solutions were investigated. Under optimal conditions (i.e. contact time: 30 min, pH: 6.5 and nanosorbents dosage: 100 mg) for a sulfate sample (50 mL, 50 mgL-1 ) the percentage of the extracted sulfate ions was 94.5%. Regeneration of sulfate adsorbed material could be possible by NaOH solution and the modified magnetic nano sorbent exhibited good reusability.


2012 ◽  
Vol 271-272 ◽  
pp. 255-258
Author(s):  
Guo Lei Zhang ◽  
Xiu Min Gao ◽  
Xiao Dong Xu

Zirconium dioxide (ZrO2) nanocrystals were prepared by the microwave-assisted ionic liquid method using an ionic liquid of 1-n-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM]BF4). The X-ray diffraction (XRD) patterns indicated that the crystal structure was monoclinic. The morphology of ZrO2 nanocrystals was characterized by field emission scanning electron microscopy (FESEM) and transimission electron microscopy (TEM), which showed uniform ZrO2 nanoparticles without aggregation. Thermogravimetry (TG) and Fourier transform infrared spectrometer (FTIR) curves confirmed the adsorption of organic compounds on the surface of ZrO2.


2013 ◽  
Vol 763 ◽  
pp. 12-16
Author(s):  
Saba Jamil ◽  
Xiao Yan Jing ◽  
Jun Wang ◽  
Song Nan Li ◽  
Jing Yuan Liu

Magnetic Fe3O4 nanobubbles surrounded by nanoparticles are prepared by adopting microwave assisted reflux method. The nanomagnetic particles surrounded by small beads like particles are fabricated by irradiating the prepaperd sample solutions by microwave radiations coupled with reflux method simultaneously at 90°C for 45 mins. The characterization of the prepared Fe3O4 particles are carried out by using x ray diffraction, scanning electron microscopy and transmission electron microscopy. The instrumentations shows the morphology that is thick walled bubble like with approximate diameter of about 300 nm to 400 nm surrounded by small nanoparticles of 5 nm to 30 nm in range. The particles are bubbles like and some broken bubbles showed that these might be hollow from inside.


2019 ◽  
Vol 16 (3) ◽  
pp. 33
Author(s):  
Nguyen Thi Minh Nguyet ◽  
Vuong Vinh Dat ◽  
Nguyen Anh Tien ◽  
Le Van Thang Thang

In this paper, molybdenum trioxide (MoO3) nanoparticles were synthesized by rapid-microwave method using ammonium heptamolybdate (AHM) as a precursor in ethylene glycol (EG) solution with concentrated HNO3. This reaction was carried out in a short period of 30 min and the nanoparticles were then heat treated at 600°C. The structures ofthe products were  analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to record the morphology and nanoparticle size of MoO3. The Raman spectrum of MoO3 displays three well-defined peaks located at 989.2, 816.0 and 665.3 cm-1 which are the fingerprints of the orthorhombicα-MoO3 crystalline phase.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Quanguo Li ◽  
Yanhua Shen ◽  
Taohai Li

In this work, CaWO4nanoparticles have been synthesized by microwave-assisted method at a low temperature of 120°C. The as-prepared powders were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). It is found that the reaction time played an important role in the morphology controlling and crystallinity level of CaWO4crystals. The effects of photoluminescent properties have a great relationship with crystallinity.


Nano Hybrids ◽  
2015 ◽  
Vol 9 ◽  
pp. 24-32
Author(s):  
Suresh Sagadevan

Bismuth tungstate (Bi2WO6) nanoparticles were synthesized by microwave assisted method. The prepared nanoparticles were investigated by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and dielectric studies. The formation of Bi2WO6nanoparticles was confirmed by X-ray diffraction (XRD). The morphology of Bi2WO6nanoparticle was characterized using scanning electron microscopy SEM. The optical properties were studied by the UV-Visible absorption spectrum. The dielectric properties of Bi2WO6nanoparticles were studied. The activation energy was calculated from AC conductivity studies.Key words: Bi2WO6nanoparticles, XRD, SEM, TEM, UV analysis, Dielectric studies and AC conductivity studies


Sign in / Sign up

Export Citation Format

Share Document