scholarly journals Effect of TEA on characteristics of CdS/PbS thin film solar cells prepared by CBD

2016 ◽  
Vol 34 (3) ◽  
pp. 540-547 ◽  
Author(s):  
H. Sattarian ◽  
T. Tohidi ◽  
SH. Rahmatallahpur

AbstractIn this study, a solar cell with a glass/ITO/CdS/PbS/Al structure was constructed. Both window (CdS) and absorption (PbS) layers were deposited by chemical bath deposition (CBD) method. The CdS window layer was deposited on ITO-glass. The PbS nanocrystalline thin film was prepared with and without triethanolamine on CdS films at bath temperature of 25 °C. CdS and PbS nanocrystals were identified using XRD and SEM. The cells are photosensitive in a large spectral range (at visible and near infrared regions). The cell with absorbing layer obtained from the bath without TEA has higher efficiency with the following parameters: the open circuit voltage (Voc) is 275 mV, short circuit current (Jsc) is 12.24 mA/cm2, maximum voltage (Vmax) is 165 mV and maximum current (Jmax) is 7.11 mA/cm2 with the efficiency η = 1.31 %, fill factor FF is 32 % under the illumination intensity of 90 mW/cm2. The cells have an area of 0.15 cm2.

2012 ◽  
Vol 567 ◽  
pp. 236-239
Author(s):  
Peng Wang ◽  
An Mei Wang ◽  
Zhen Hua Zhang ◽  
Li Bo Fan ◽  
Yan Lei ◽  
...  

Lead sulfide (PbS) magic cubes were prepared by a simple hydrothermal method without any organic solvent. The product was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and absorption spectrum. A solar cell, with a structure of Al/P3HT:PbS/PEDOT:PSS/ITO/Glass, was made. By a spin coating method, a hybrid film of poly(3-hexylthiophene) (P3HT) and PbS was prepared on the PEDOT:PSS layer. The solar cells are photosensitive in a large spectral range (visible and near infrared regions). The cells, with the area of 0.15 cm2 without any special treatment, have shown the values of open-circuit voltage (Voc) of 242 mV, short circuit current (Jsc) of 0.01 mA/cm2, energy conversion efficiency (η) of 0.01 % and fill factor (FF) of 0.31 under illumination intensity of 100 mW/cm2.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2012 ◽  
Vol 476-478 ◽  
pp. 1767-1770
Author(s):  
Yu Li Lin ◽  
Cheng Yi Hsu ◽  
Chang Lun Tai

The task of this study is to prepare the TiO2 film electrode for dye-sensitized solar cells (DSSC) on ITO PET substrate using a general jet-printer. The results were compared with that obtained using ITO glass substrate. In this study, the dispersion of TiO2 slurry was manipulated by changing the pH value of the solution to avoid agglomeration of TiO2 particles. The average TiO2 particles used in this study were measured about 130nm. The experimental results show that it has the best performance when the thickness of the TiO2 film was about 10μm. In ITO glass substrate, the measured short circuit current was about 5.03mA, the open circuit voltage was measured to be 0.65V. In ITO-PET substrate, the measured short circuit current was about 2.73mA, the open circuit voltage was measured to be 0.68V.


2021 ◽  
Vol 13 (23) ◽  
pp. 13087
Author(s):  
Waqas Farooq ◽  
Muhammad Ali Musarat ◽  
Javed Iqbal ◽  
Syed Asfandyar Ali Kazmi ◽  
Adnan Daud Khan ◽  
...  

Modification of a cell’s architecture can enhance the performance parameters. This paper reports on the numerical modeling of a thin-film organic solar cell (OSC) featuring distributed Bragg reflector (DBR) pairs. The utilization of DBR pairs via the proposed method was found to be beneficial in terms of increasing the performance parameters. The extracted results showed that using DBR pairs helps capture the reflected light back into the active region by improving the photovoltaic parameters as compared to the structure without DBR pairs. Moreover, implementing three DBR pairs resulted in the best enhancement gain of 1.076% in power conversion efficiency. The measured results under a global AM of 1.5G were as follows: open circuit voltage (Voc) = 0.839 V; short circuit current density (Jsc) = 10.98 mA/cm2; fill factor (FF) = 78.39%; efficiency (η) = 11.02%. In addition, a thermal stability analysis of the proposed design was performed and we observed that high temperature resulted in a decrease in η from 11.02 to 10.70%. Our demonstrated design may provide a pathway for the practical application of OSCs.


MRS Advances ◽  
2017 ◽  
Vol 2 (53) ◽  
pp. 3147-3156 ◽  
Author(s):  
Erenn Ore ◽  
Gehan Amaratunga ◽  
Stefaan De Wolf

ABSTRACTIn the conventional crystalline silicon heterojunction solar cell with the intrinsic thin layer structure (the HIT solar cell), a p-doped thin film silicon or its alloy (pDTF-Si/A) is used as the hole collecting window layer. However, the parasitic absorbance in the pDTF-Si/A window layer, and the toxic, explosive diborane gas used for p-doping are limiting factors for achieving HIT cells with reduced processing costs and / or higher efficiencies. In this work, pDTF-Si/A is replaced by V2Ox, which is deposited by a simple physical vapor deposition technique. Due to the wide band gap of V2Ox, the HIT solar cell with the V2Ox window layer generates a higher short-circuit current density than the reference conventional HIT cell under 1 sun, and achieves an open-circuit voltage of 0.7 V. Furthermore, the charge carrier lifetime and pseudo-efficiency values of the HIT solar cell with the V2Ox window layer indicate that this cell has the potential to outperform the conventional HIT cell in terms of the power conversation efficiency under the standard test conditions.


2019 ◽  
Vol 34 (04) ◽  
pp. 2050053
Author(s):  
Fatemeh Ghavami ◽  
Alireza Salehi

In this paper, the performance of copper-indium-gallium-diselenide Cu(In,Ga)Se2 solar cell, with ZnO window layer, ZnSe buffer layer, CIGS absorber layer and InGaP reflector layer was studied. The study was performed using the TCAD Silvaco simulator. The effects of grading the band gap of CIGS absorber layer, the various thicknesses and doping concentrations of different layers have been investigated. By optimizing the solar cell structure, we have obtained a maximum open circuit voltage of 0.91901 V, a short circuit current density of 39.89910 mA/cm2, a fill factor (FF) of 86.67040% and an efficiency of 31.78% which is much higher than the values for similar CIGS solar cells reported so far.


2011 ◽  
Vol 378-379 ◽  
pp. 601-605 ◽  
Author(s):  
Saleh N. Alamri ◽  
M. S. Benghanem ◽  
A. A. Joraid

This study investigates the preparation of the three main layers of a CdS/CdTe thin film solar cell using a single vacuum system. A Close Space Sublimation System was constructed to deposit CdS, CdTe and CdCl2 solar cell layers. Two hot plates were used to heat the source and the substrate. Three fused silica melting dishes were used as containers for the sources. The properties of the deposited CdS and CdTe films were determined via Atomic force microscopy, scanning electron microscopy, X-ray diffraction and optical transmission spectroscopy. An J-V characterization of the fabricated CdS/CdTe solar cells was performed under solar radiation. The short-circuit current density, Jsc, the open-circuit voltage, Voc, fill factor, FF and conversion efficiency, η, were measured and yielded values of 27 mA/cm2, 0.619 V, 58% and 9.8%, respectively.


Author(s):  
Muneer H. Jadduaa ◽  
Nadir Fadhil Habubi ◽  
Alaa Z. Ckal

—In this study, (CdO) thin film, which was prepared by chemical method and deposited by drop casting technique on glass and silicon substrates have been studied . The structural, optical and chemical analysis were investigated. X-ray diffraction (XRD) measurements reveal that the (CdO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements assure that the energy gap of (CdO) thin film was found to be 2.5eV. I-V characterization of the solar cell under illumination at 40mW/cm2 fluence was investigated . The open circuit voltage (Voc) was 4.1V and short-circuit current density (Isc) was 1.44 mA. These measurements show that the fill factor (FF) and the conversion efficiency (η) ,were 36.2% and 6.8% respectively.


2021 ◽  
Vol 5 (3) ◽  
pp. 242-250
Author(s):  
D. Sergeyev ◽  
K. Shunkeyev ◽  
B. Kuatov ◽  
N. Zhanturina

In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.


2019 ◽  
Vol 14 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Farjana Akter Jhuma ◽  
Mohammad Junaebur Rashid

AbstractThe performance of CZTS solar cell, a promising candidate in the field of energy production from sunlight, can be improved by optimizing the parameters of most widely used CdS buffer layer. In this work, numerical study have been done on the typical CZTS solar cell structures containing Mo thin film as back contact on glass substrate using SCAPS-1D solar cell simulation software. Then, the CZTS has been used as the absorber layer followed by CdS buffer later. Following, ZnO and transparent conducting oxide n-ITO layers have been considered as window layer and front contact, respectively. In the simulations, the CdS buffer layer has been doped with three different materials such as Silver (Ag), Copper (Cu) and Chlorine (Cl) for a wide acceptable range of carrier concentration. After obtaining the suitable carrier concentration, the thickness of the doped buffer layer has been varied keeping other layer parameters constant to see the variation of performance parameters open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and efficiency (η) of the CZTS solar cell.


Sign in / Sign up

Export Citation Format

Share Document