scholarly journals FP-(L)APW + lo study of mechanical stability and electronic behavior of CoGe in B20 structure

2017 ◽  
Vol 35 (3) ◽  
pp. 548-559 ◽  
Author(s):  
M. A. Timaoui ◽  
H. Bouafia ◽  
B. Sahli ◽  
S. Hiadsi ◽  
B. Abidri ◽  
...  

AbstractThe aim of this work is a theoretical study of structural, elastic, electronic and thermal properties of CoGe compound in B20 structure using All-electron self-consistent Full Potential Augmented Plane Waves plus local orbital “FP(L)APW + lo” within the framework of Density Functional Theory DFT. GGA-PBEsol is the exchange-correlation potential selected in this work. This choice is motivated by the success of this functional in predicting structural and mechanical properties of solids. The values obtained by the study of structural properties are in very good agreement with those found previously. In this work, the elastic constants have been predicted for the first time and the obtained values confirm the mechanical stability of the CoGe compound in its B20 structure. The electronic part of this work shows that CoGe has metallic behavior with a mixed bonding between cobalt and germanium of covalent-metallic type. The effect of temperature and hydrostatic pressure on the lattice parameter - a0, heat capacity at constant volume - CV, thermal expansion coefficient - α and entropy - S of the CoGe have been studied using Debye model.

2014 ◽  
Vol 1047 ◽  
pp. 61-64
Author(s):  
Veena Thakur ◽  
Gitanjali Pagare ◽  
Sunil S. Chouhan ◽  
Sankar P. Sanyal

The structural, electronic and elastic properties of nonmagnetic LuPd3compound, which crystallize in AuCu3-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within the PBE-sol GGA for the exchange correlation potential. The ground states properties such as lattice parameter (ao), bulk modulus (B) and pressure derivative (B') have been obtained using optimization method. The elastic properties such as Young’s modulus (E), Poisson’s ratio (σ) and anisotropic ratio (A) and thermal are predicted for first time. The ductility of these compounds has been analyzed using Pugh criteria.


2011 ◽  
Vol 268-270 ◽  
pp. 275-279
Author(s):  
Hai Yan Wang ◽  
Dong Xia Xu ◽  
Jin Bang Yu ◽  
Xu Sheng Li ◽  
Qian Ku Hu

The thermodynamic properties of AlNi are investigated by the full-potential linearized muffin-tin orbital (FP-LMTO) scheme within the generalized gradient approximation correction (GGA) in the frame of density functional theory. The calculated lattice parameter and bulk modulus are in excellent agreement with the experimental and other calculated results. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of relative volumeV/V0on pressureP, cell volumeVon temperatureT, linear thermal expansion α and specific heatCVon temperature and pressure are successfully obtained.


SPIN ◽  
2021 ◽  
Vol 11 (02) ◽  
pp. 2150017
Author(s):  
Halima Hamada ◽  
Keltouma Boudia ◽  
Friha Khelfaoui ◽  
Kadda Amara ◽  
Toufik Nouri ◽  
...  

The structural, electronic, elastic and magnetic properties of CoCrScIn were investigated using first principle calculations with applying the full-potential linearized augmented plane waves (FP-LAPW) method, based totally on the density functional theory (DFT). After evaluating the results, the calculated structural parameters reveal that CoCrScIn compound is stable in its ferrimagnetic configuration of the type-III structure. The mechanical properties show its brittle and stiffer behavior. The formation energy value showed that CoCrScIn can be experimentally synthesized. Additionally, the obtained band structures and density of states (DOS) reflect the half-metallic behavior of CoCrScIn, with an indirect bandgap of 0.43[Formula: see text]eV. The total magnetic moment of 3[Formula: see text][Formula: see text] and half-metallic ferrimagnetic state are maintained in the range 5.73–6,79 Å. The magnetic moment especially issues from the Cr-[Formula: see text] and Co-[Formula: see text] spin-polarizations. Furthermore, the calculations of Curie temperature reveal that CoCrScIn has high magnetic transition temperature of 836.7[Formula: see text]K.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 399-404 ◽  
Author(s):  
Zi-Jiang Liu ◽  
Xiao-Ming Tan ◽  
Yuan Guo ◽  
Xiao-Ping Zheng ◽  
Wen-Zhao Wu

The thermodynamic properties of tetragonal CaSiO3 perovskite are predicted at high pressures and temperatures using the Debye model for the first time. This model combines the ab initio calculations within local density approximation using pseudopotentials and a plane wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. It is found that the calculated equation of state is in excellent agreement with the observed values at ambient condition. Based on the first-principles study and the Debye model, the thermal properties including the Debye temperature, the heat capacity, the thermal expansion and the entropy are obtained in the whole pressure range from 0 to 150 GPa and temperature range from 0 to 2000 K.


2015 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mokhtar Berrahal ◽  
Mohammed Ameri ◽  
Y. Al-Douri ◽  
U. Hashim ◽  
Dinesh Varshney ◽  
...  

AbstractThe paper presents an investigation on crystalline, elastic and electronic structure in addition to the thermodynamic properties for a CeRu4P12 filled skutterudite device by using the full-potential linear muffin-tin orbital (FP-LMTO) method within the generalized gradient approximations (GGA) in the frame of density functional theory (DFT). For this purpose, the structural properties, such as the equilibrium lattice parameter, bulk modulus and pressure derivatives of the bulk modulus, were computed. By using the total energy variation as a function of strain we have determined the independent elastic constants and their pressure dependence. Additionally, the effect of pressure P and temperature T on the lattice parameters, bulk modulus, thermal expansion coefficient, Debye temperature and the heat capacity for CeRu4P12 compound were investigated taking into consideration the quasi-harmonic Debye model.


2012 ◽  
Vol 20 (1) ◽  
pp. 166-171
Author(s):  
Vasil Koteski ◽  
Jelena Belošević-Čavor ◽  
Petro Fochuk ◽  
Heinz-Eberhard Mahnke

The lattice relaxation around Ga in CdTe is investigated by means of extended X-ray absorption spectroscopy (EXAFS) and density functional theory (DFT) calculations using the linear augmented plane waves plus local orbitals (LAPW+lo) method. In addition to the substitutional position, the calculations are performed for DX- and A-centers of Ga in CdTe. The results of the calculations are in good agreement with the experimental data, as obtained from EXAFS and X-ray absorption near-edge structure (XANES). They allow the experimental identification of several defect structures in CdTe. In particular, direct experimental evidence for the existence of DX-centers in CdTe is provided, and for the first time the local bond lengths of this defect are measured directly.


2010 ◽  
Vol 24 (03) ◽  
pp. 315-324
Author(s):  
ZI-JIANG LIU ◽  
XIAO-WEI SUN ◽  
CAI-RONG ZHANG ◽  
LI-NA TIAN ◽  
YUAN GUO

The thermodynamic properties of MgSiO 3 post-perovskite are predicted at high pressures and temperatures using the Debye model for the first time. This model combines with ab initio calculations within local density approximation using pseudopotentials and a plane wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. It is found that the calculated equation of state of MgSiO 3 post-perovskite is in excellent agreement with the latest observed values. Based on the first-principles study and the Debye model, the thermal properties including the Debye temperature, the heat capacity, the thermal expansion, and the entropy are obtained in the whole pressure range from 0 to 150 GPa and temperature range from 0 to 2000 K.


2019 ◽  
Vol 33 (21) ◽  
pp. 1950234
Author(s):  
T. Ghellab ◽  
H. Baaziz ◽  
Z. Charifi ◽  
K. Bouferrache ◽  
Ş Uğur ◽  
...  

Based on the density functional theory (DFT) implemented by the wien2k code which uses the full potential linearized augmented plane wave plus local orbitals (APW + lo) method, we have been able to study different physical properties of X[Formula: see text]PN2 (X = Li, Na) chalcopyrite such as structural, electronic, elastic and thermoelectric properties. According to our calculations, we have found that our structural and electronic parameters, such as the lattice parameter, energy bandgap, the tetragonal ratio, the displacement of the anions, are in very good agreement with the previous experimental and theoretical results. Based on the Voigt–Reuss–Hill approximations, we were able to compute the elastic constants: the compressibility, Young’s and the shear’s moduli, the average velocity of the elastic waves, the Debye temperature and the Poisson’s coefficient of the chalcopyrite LiPN2 and NaPN2. The elastic anisotropy is estimated and further illustrated by the three-dimensional (3D) direction of Young’s and Bulk’s moduli. Finally, using the semi-classical Boltzmann theory implemented in the BolzTraP code, we calculated the transport properties such as the Seebeck coefficient, the thermal electrical conductivity and the figure of merit of these materials.


2014 ◽  
Vol 805 ◽  
pp. 690-693
Author(s):  
Carlos Alberto Soufen ◽  
Marcelo Capella de Campos ◽  
Carlos Alberto Fonzar Pintão ◽  
Momotaro Imaizumi

The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.


Author(s):  
Pravesh Singh ◽  
Sheetal Sharma ◽  
Sarita Kumari ◽  
Vibhav K Saraswat ◽  
D. Sharma ◽  
...  

We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of CuGaTe2. In this study, we used an accurate full potential linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the full elastic tensors. We report electronic and optical properties with the recently developed density functional of Tran and Blaha. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, were calculated for photon energies up to 30 eV. The thermodynamical properties such as Debye temperature, entropy and Gruneisen parameter, bulk modulus and hardness were calculated employing the quasi-harmonic Debye model at different temperatures (0-1000 K) and pressures (0-8 GPa) and the silent results were interpreted. Most of the investigated parameters are reported for the first time. DOI: 10.21883/FTP.2017.05.44433.8044


Sign in / Sign up

Export Citation Format

Share Document