Effect of ultrasonic melt treatment on the tribological behavior of 7075 aluminum alloy

2020 ◽  
Vol 62 (12) ◽  
pp. 1243-1250
Author(s):  
Fahri Vatansever ◽  
Alpay Tamer Erturk ◽  
Erol Feyzullahoglu

Abstract In this study, the tribological properties of 7075 aluminum alloy produced by ultrasonic melt treatment (UST) are investigated. Tribological properties of untreated and ultrasonically treated samples under dry and lubricated sliding conditions were analyzed experimentally by the block on ring test method. Worn surfaces of untreated and ultrasonically treated samples were scanned by 3D optical profilometer and analyzed to search out wear characteristics in the material. Furthermore, microstructural examinations were conducted to investigate the beneficial effects of UST on the microstructural properties of the alloy using optical and scanning electron microscopy. According to the results obtained, UST refines the α-Al phase of the alloy and disperses precipitates to grain boundaries more uniformly. Also, hardness and density of the alloy increased through the effect of UST. Due to these favorable effects, the wear resistance of the alloy increased and the worn surfaces of the ultrasonically treated samples exhibited lower surface roughness according to 3D surface roughness measurements.

2020 ◽  
Vol 62 (12) ◽  
pp. 1243-1250
Author(s):  
Fahri Vatansever ◽  
Alpay Tamer Erturk ◽  
Erol Feyzullahoglu

2021 ◽  
Vol 1047 ◽  
pp. 62-67
Author(s):  
Shen Wang ◽  
Le Tong ◽  
Guang Jun Chen ◽  
Mao Xun Wang ◽  
Bin Dai ◽  
...  

7075 aluminum alloy is widely used due to its great performance, especially in aerospace area. In this paper, ultrasonic-assisted grinding technology is used to process 7075 aluminum alloy. The data is obtained through experiments, and the surface roughness and morphology of ultrasonic assisted grinding and conventional grinding under different spindle speeds, feed rates, and amplitudes are analyzed. Research has found that the increase in spindle speed and amplitude will improve the quality of the machined surface and reduce the surface roughness by 82.1% and 36%. However, with the increase of feed rate, the surface quality decreased significantly, and the surface roughness increased by 55.6%. The surface micro-morphology of the machined workpiece is observed, and the effects of different processing parameters on the surface micro-morphology are obtained.


2018 ◽  
Vol 920 ◽  
pp. 83-88
Author(s):  
Jun Hao Zhang ◽  
Xiu Quan Cheng ◽  
Qin Xiang Xia ◽  
Jia Yu Li

The laser shot peening has the widely application prospect in aircraft structural parts repairment. The influence of laser shot peening parameters on the surface hardness and surface roughness has guiding significance for laser shot peening process. The variation law of surface hardness and surface roughness in the peening area of 7075 aluminum alloy were obtained based on the experiment research. The results show that the surface hardness improves effectively after laser shot peening, and the maximum hardness is 205.4HV, which is improved by 19.49% compared with the original hardness. Besides, the surface roughness of the rough specimen decreases; whereas, those of the smooth specimen increases after laser shot peening. However, both the surface hardness and surface roughness tend to be saturated when the impact times exceeds 3 times or the overlap rate exceeds 50%. Therefore, a good repairment effect can be obtained with 3 impact times and 50% overlap rate for the 7075 aluminum alloy specimen.


2006 ◽  
Vol 317-318 ◽  
pp. 363-368
Author(s):  
T. Hirao ◽  
Kiyoshi Hirao ◽  
Yukihiko Yamauchi

Alternate layered composites of Si3N4 layers and layers of Si3N4 with 20 vol% of hBN (Si3N4-BN layers) were fabricated and their tribological properties and thermal conductivities were evaluated. The layered composites were fabricated by alternate stacking of a monolithic Si3N4 layer and a Si3N4-BN layer in the form of a green sheet, followed by hot-pressing or annealing. For comparison, Si3N4 and Si3N4 with 10% hBN were fabricated by hot-pressing powder mixtures. Tribological properties were evaluated on the side plane of the composites by a block-on-ring test method under a dry sliding condition and thermal conductivities were evaluated. The layered composites were found to have lower friction coefficients and higher wear resistance than to simple composites. Moreover, for the layered composite with an aligned β-Si3N4, the friction coefficient on the plane composed of faceted hexagonal grains was lower. The layered composite with an aligned β-Si3N4 in the Si3N4 layer, fabricated by annealing for 72 h indicated both a low friction coefficient (0.28) and high thermal conductivity (130 W/mK).


2018 ◽  
Vol 774 ◽  
pp. 1-6 ◽  
Author(s):  
Emanuele Vincenzo Arcieri ◽  
Sergio Baragetti ◽  
Emanuele Borzini

Light alloys are a very interesting challenge in order to have light components with high mechanical features. One of these is the 7075 aluminum alloy, which is commonly employed in aeronautic, automotive and maritime fields.On the other hand, the application of a PVD (Physical Vapor Deposition) coating can improve the hardness of the surface and the tribological properties of the component.The effectiveness of these coatings on the fatigue behavior of the sublayer material is not already clear. For this reason, bending tests on uncoated and coated specimens in air were performed in order to evaluate the S-N diagrams


2016 ◽  
Vol 256 ◽  
pp. 282-287 ◽  
Author(s):  
Waleed Khalifa ◽  
Yoshiki Tsunekawa ◽  
Shimaa El-Hadad

In this study, un-refined A383 aluminum alloy was cast at different temperatures using ultrasonic melt treatment. The liquid alloy was treated by ultrasonic vibrations in the crucible and/or in the shot sleeve of a pressure diecasting machine. The treatment temperature extended to the semisolid temperature range. The UST melt could be injected into the die cavity while being in the semisolid state which is known as rheodiecasting. The results showed that ultrasonic treatment resulted in finer microstructure, globular Fe-intermetallic particles and partially modified eutectic Si. For samples solidified in shot sleeve: Fe-intermetallics become compacted with UST at all positions of ingot. Si particles are compacted in less acicular form near to horn and acicular at other positions. For the rheo-diecasting experiments, with UST treatment in the crucible and die casting, at 600-588 C and 588-578C, Fe-intermetallics were observed in compact form, and Si particles were highly modified.


Sign in / Sign up

Export Citation Format

Share Document