scholarly journals MWNT Surface Self-Assembling in Fire Retardant Polyethylene-Carbon nanotubes nanocomposites

nano Online ◽  
2016 ◽  
Author(s):  
Sergio Bocchini ◽  
Emanuela Annibale ◽  
Alberto Frache ◽  
Giovanni Camino
e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Sergio Bocchini ◽  
Emanuela Annibale ◽  
Alberto Frache ◽  
Giovanni Camino

AbstractMultiwall carbon nanotubes (MWNT) were melt blended at different concentration with linear low density polyethylene (LLDPE). The nanotubes impart the fire-retardant characteristics to the polymer by formation of a thin protective film of MWNT/carbon char generated on the surface of the nanocomposites. The film formation mechanism is discussed


Carbon ◽  
2010 ◽  
Vol 48 (5) ◽  
pp. 1694-1695 ◽  
Author(s):  
Jun Qiu ◽  
Shi-hong Zhang ◽  
Guo-jian Wang ◽  
Yi-lei Gong

Cellulose ◽  
2020 ◽  
Vol 27 (12) ◽  
pp. 7271-7281
Author(s):  
Damian Łukawski ◽  
Wojciech Grześkowiak ◽  
Agnieszka Lekawa-Raus ◽  
Małgorzata Widelicka ◽  
Filip Lisiecki ◽  
...  

Abstract A new composite flame retardant coating for cotton roving has been investigated. The proposed coating comprises natural lignin, pure carbon allotrope carbon nanotubes (CNTs) and non-toxic potassium carbonate (K2CO3). The series of complementary experiments, including thermogravimetric analysis, vertical burning in fire tube, limiting oxygen index (LOI) measurement and combustion in mass loss calorimeter enabled the formulation of an optimum composition including aqueous suspension with 1 wt% of CNTs, 1 wt% lignin (L) as well as 1 wt% of K2CO3. Applying L/CNT/K2CO3 on cotton roving increased LOI from 17.1 to 38.5%, decreased final mass loss and temperature during vertical burning from 100 to 78% and 457 to 190 °C, respectively. Moreover, peak heat release rate and total heat released dropped from 97.5 to 70.4 kW/m2 and from 4.2 to 1.6 MJ/m2, respectively . The above experiments supported by scanning electron microscopy and Raman spectroscopy allowed also the explanation of the complementary mechanisms responsible for the overall fire retardant effect.


Author(s):  
A. R. Horrocks ◽  
D. Price
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3440
Author(s):  
Mohd Na’im Abdullah ◽  
Mazli Mustapha ◽  
Nabihah Sallih ◽  
Azlan Ahmad ◽  
Faizal Mustapha ◽  
...  

The utilisation of rice husk ash (RHA) as an aluminosilicate source in fire-resistant coating could reduce environmental pollution and can turn agricultural waste into industrial wealth. The overall objective of this research is to develop a rice-husk-ash-based geopolymer binder (GB) fire-retardant additive (FR) for alkyd paint. Response surface methodology (RSM) was used to design the experiments work, on the ratio of RHA-based GB to alkyd paint. The microstructure behaviour and material characterisation of the coating samples were studied through SEM analysis. The optimal RHA-based GB FR additive was formulated at 50% wt. FR and 82.628% wt. paint. This formulation showed the result of 270 s to reach 200 °C and 276 °C temperature at equilibrium for thermal properties. Furthermore, it was observed that the increased contents of RHA showed an increment in terms of the total and open porosities and rough surfaces, in which the number of pores on the coating surface plays an important role in the formation of the intumescent char layer. By developing the optimum RHA-based GB to paint formulation, the coating may potentially improve building fire safety through passive fire protection.


2021 ◽  
Vol 5 (6) ◽  
pp. 144
Author(s):  
Klaudio Bari ◽  
Thozhuvur Govindaraman Loganathan

The research aim is to investigate the performance of novel enriched mineral fibres (Filava) in polysiloxane SLIRES H62 resin. Specimens were manufactured using a vacuum bagging process and oven cured at 250 °C. Specimens were prepared for flexural testing according to BS EN ISO 14125:1998 to obtain flexural strength, modulus, and elongation. The mechanical strength was compared to similar composites, with the aim of determining composite performance index. The flexural modulus (9.7 GPa), flexural strength (83 MPa), and flexural strain (2.9%) were obtained from a three-point bending test. In addition, the study investigates the thermal properties of the composite using a state-of-art Zwick Roell high temperature tensile rig. The results showed Filava/Polysiloxane Composites had an ultimate tensile strength 400 MPa, Young’s modulus 16 GPa and strain 2.5% at 1000 °C, and no smoke and ash were observed during pyrolysis. Ongoing research is currently taking place to use Filava-H62 in fire-retardant enclosure for lithium-ferro-phosphate Batteries used in electric trucks.


1970 ◽  
Vol 6 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Charles W. George ◽  
Aylmer D. Blakely

2020 ◽  
Vol 18 (9) ◽  
pp. 669-685
Author(s):  
Padmaker Pandey ◽  
Anamika Pandey ◽  
Shruti Singh ◽  
Nikhil Kant Shukla

A compromising and well-organized model system is needed for investigating the molecular behaviour of biomolecules as many transduction processes and biological recognition occur at biological surfaces. The application of techniques in interfacial surfaces like one molecule thick films has made a feasible and significant tool for modern scientific studies. Self Assembling Monolayers (SAMs) technology is a very useful means for producing monomolecular films of various biological molecules on different substrates. Carbon Nanotubes (CNTs) have length-to-diameter aspect ratio property which provides a large surface-to-volume ratio, making it an intensely capable material for biomolecular attachments. The incorporation of Carbon Nanotubes (CNTs) with biological systems forming functional assemblies has shown an explored area of research. Organo-sulfur mainly alkanethiol (CnH2n+1–SH) molecules get adsorbed onto CNTs. This phenomenon has grabbed a lot of attention because Self Assembling Monolayers (SAMs) of organo-sulfur compound acts as an example system for understanding important chemical, physical or biological processes.


Sign in / Sign up

Export Citation Format

Share Document