scholarly journals Study and Use of Rice Husk Ash as a Source of Aluminosilicate in Refractory Coating

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3440
Author(s):  
Mohd Na’im Abdullah ◽  
Mazli Mustapha ◽  
Nabihah Sallih ◽  
Azlan Ahmad ◽  
Faizal Mustapha ◽  
...  

The utilisation of rice husk ash (RHA) as an aluminosilicate source in fire-resistant coating could reduce environmental pollution and can turn agricultural waste into industrial wealth. The overall objective of this research is to develop a rice-husk-ash-based geopolymer binder (GB) fire-retardant additive (FR) for alkyd paint. Response surface methodology (RSM) was used to design the experiments work, on the ratio of RHA-based GB to alkyd paint. The microstructure behaviour and material characterisation of the coating samples were studied through SEM analysis. The optimal RHA-based GB FR additive was formulated at 50% wt. FR and 82.628% wt. paint. This formulation showed the result of 270 s to reach 200 °C and 276 °C temperature at equilibrium for thermal properties. Furthermore, it was observed that the increased contents of RHA showed an increment in terms of the total and open porosities and rough surfaces, in which the number of pores on the coating surface plays an important role in the formation of the intumescent char layer. By developing the optimum RHA-based GB to paint formulation, the coating may potentially improve building fire safety through passive fire protection.

2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eryani . ◽  
Sri Aprilia ◽  
Farid Mulana

<p>Agricultural waste such as rice straw, rice husk and rice husk ash have not been utilized properly. This waste of agricultural produce can actually be used as an alternative to bionanofiller because it contains an excellent source of silica. The silica content contained in the rice waste when combined with the polymer matrix can produce composites having high thermal and mechanical properties. Characterization of bionanofiller from this rice waste is done by SEM, XRF, FTIR, XRD and particle density. The result of SEM analysis from this rice waste is feasible to be used as filler because it has size 1 μm. Likewise with the results of XRF analysis that rice waste contains a high enough silica component that is 80.6255% - 89.83%. FTIR test results also show that bionanoparticles from rice waste have the same content of silica. In the XRD analysis the best selective gain of rice waste is found in rice husk ash which is characteristic of amorp silica at a range of 2ϴ = 22<br />. The largest density analysis of paddy waste was found in rice husk 0.0419 gr / cm , followed by rice straw by of 0.0417 gr / cm 3 and rice hulk ash 0.0407 g / cm 3</p>


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4373
Author(s):  
Mohd Salahuddin Mohd Basri ◽  
Faizal Mustapha ◽  
Norkhairunnisa Mazlan ◽  
Mohd Ridzwan Ishak

Compressive strength is an important property in construction material, particularly for thermal insulation purposes. Although the insulation materials possess high fire-retardant characteristics, their mechanical properties are relatively poor. Moreover, research on the correlation between fire-retardant and compressive strength of rice husk ash (RHA)-based geopolymer binder (GB) is rather limited. In addition, previous studies on RHA-based GB used the less efficient one-factor-at-a-time (OFAT) approach. In understanding the optimum value and significant effect of factors on the compressive strength, it was deemed necessary to employ statistical analysis and a regression coefficient model (mathematical model). The objective of the study is to determine the effect of different material behavior, namely brittle and ductile, on the compressive strength properties and the optimum material formulation that can satisfy both compressive strength and fire-retardant properties. The factors chosen for this study were the rice husk ash/activated alkaline solution (RHA/AA) ratio and the sodium hydroxide (NaOH) concentration. Compressive strength and fire-retardant tests were conducted as part of the experiments, which were designed and analyzed using the response surface methodology (RSM). The microstructure of geopolymer samples was investigated using a scanning electron microscope (SEM). Results showed that RHA/AA ratio was highly significant (p < 0.000) followed by NaOH concentration (p < 0.024). When the RHA/AA ratio was at 0.7 to 0.8 and the NaOH concentration was between 12 and 14 M, high compressive strength above 28 MPa was recorded. Optimum compressive strength of approximately 47 MPa was achieved when the RHA/AA ratio and NaOH concentration were 0.85 and 14 M, respectively. Brittle samples with low Si/Al ratio of 88.95 were high in compressive strength, which is 33.55 MPa, and showed a high degree of geopolymerization. Inversely, ductile samples showed low compressive strength and degree of geopolymerization. Water content within the geopolymer binder had a major effect on its fire-retardant properties. Semi-ductile GB showed the best fire-retardant properties, followed by semi-brittle and brittle GB. Using RHA as an aluminosilicate source has proven to be a promising alternative.


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


2014 ◽  
Vol 600 ◽  
pp. 240-249
Author(s):  
Everton Jose da Silva ◽  
Maria Lidiane Marques ◽  
Antonio Rogério B. Vasconcelos ◽  
Jorge L. Akasaki ◽  
Mauro M. Tashima ◽  
...  

Nowadays, the reuse of waste products in the construction process is a priority research area. Several industrial and agricultural waste products have been investigated, such as fly ash, sugar cane bagasse ash and rice husk ash. This paper analyzes a very important aspect under intense discussion in the scientific community: the Rice Husk Ash (RHA) grinding process. This paper investigates a low carbon RHA with high pozzolanic reactivity produced under uncontrolled burning conditions. The compressive strength of mortar specimens prepared using both ground and natural RHA were tested for 3-56 days and the capillarity absorption was measured for mortars cured during 28 days. Very promising and interesting results were obtained using natural rice husk ash in the production of blended mortars.


2017 ◽  
Vol 97 ◽  
pp. 01025 ◽  
Author(s):  
Mohd Salahuddin Mohd Basri ◽  
Norkhairunnisa Mazlan ◽  
Faizal Mustapha ◽  
Mohamad Ridzwan Ishak

Author(s):  
Subhasish Majee ◽  
Gopinath Halder ◽  
R. N. Krishnaraj ◽  
Tamal Mandal

The present study focused on the utilization of solid wastes viz. wet blue leather of leather industry, rice husk ash from rice mills, and water hyacinth in addition to a commercial steamed bone meal for the invention of nutrient-enriched organic fertilizer. To produce NPK organic fertilizer, chromium-free wet blue leather (WBL) as nitrogen source was amalgamated with rice husk ash, water hyacinth, and commercial steamed bone meal as a potassium and phosphorus source. The efficiency of such developed organic fertilizer designated as type I was tested as a nutrients source on the marigold plant. Ammonia analysis of fertilizer applied soil samples revealed that the content of liberated free ammonia in the soil fertilized with organic fertilizer was 44.80 %, 20.70 %, and 10.35% higher than the natural soil, chemically fertilized soil and fertilized with vermicompost respectively. Application of developed organic fertilizer and vermicompost designated as type II on marigold plant resulted in significant growth which are comparable to those obtained with commercial Chemical fertilizer. The plant growth increased by chemical fertilizer, Type I fertilizer, and Type II fertilizer in terms of plant height 26.5 %, 20 %, 22.7% and leaf size 21.2 %, 15.4 %, 17.3 % respectively which are observed to be higher than the growth of the control plant.


2020 ◽  
Vol 42 ◽  
pp. 48
Author(s):  
Marcela Trojahn Nunes ◽  
Fabiele Schaefer Rodrigues ◽  
Jocenir Boita

The use of agricultural waste has become a necessity due to its high environmental cost. As an example of this, we have rice husk ash (CCA), produced by the indiscriminate burning of rice husk, as well as the need to look for alternatives to reuse the waste sustainably, either by applying it to nanomaterials or by extracting SiO2 present in rice husk ash. This study addresses the use of characterization techniques for rice husk ash residue, showing the quality of SiO2 present in the residue.


Sign in / Sign up

Export Citation Format

Share Document