scholarly journals Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

Nanophotonics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 253-267 ◽  
Author(s):  
Mauro Brotons-Gisbert ◽  
Juan P. Martínez-Pastor ◽  
Guillem C. Ballesteros ◽  
Brian D. Gerardot ◽  
Juan F. Sánchez-Royo

AbstractTwo-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

2020 ◽  
Vol 117 (24) ◽  
pp. 244002
Author(s):  
Chao Lyu ◽  
Yaozheng Zhu ◽  
Pingfan Gu ◽  
Jiandong Qiao ◽  
Kenji Watanabe ◽  
...  

2021 ◽  
Author(s):  
Muhammad Aamir Iqbal ◽  
Maria Malik ◽  
Wajeehah Shahid ◽  
Waqas Ahmad ◽  
Kossi A. A. Min-Dianey ◽  
...  

Plasmonics is a technologically advanced term in condensed matter physics that describes surface plasmon resonance where surface plasmons are collective electron oscillations confined at the dielectric-metal interface and these collective excitations exhibit profound plasmonic properties in conjunction with light interaction. Surface plasmons are based on nanomaterials and their structures; therefore, semiconductors, metals, and two-dimensional (2D) nanomaterials exhibit distinct plasmonic effects due to unique confinements. Recent technical breakthroughs in characterization and material manufacturing of two-dimensional ultra-thin materials have piqued the interest of the materials industry because of their extraordinary plasmonic enhanced characteristics. The 2D plasmonic materials have great potential for photonic and optoelectronic device applications owing to their ultra-thin and strong light-emission characteristics, such as; photovoltaics, transparent electrodes, and photodetectors. Also, the light-driven reactions of 2D plasmonic materials are environmentally benign and climate-friendly for future energy generations which makes them extremely appealing for energy applications. This chapter is aimed to cover recent advances in plasmonic 2D materials (graphene, graphene oxides, hexagonal boron nitride, pnictogens, MXenes, metal oxides, and non-metals) as well as their potential for applied applications, and is divided into several sections to elaborate recent theoretical and experimental developments along with potential in photonics and energy storage industries.


Nanophotonics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 2017-2032 ◽  
Author(s):  
Chitraleema Chakraborty ◽  
Nick Vamivakas ◽  
Dirk Englund

AbstractTwo-dimensional (2D) materials are being actively researched due to their exotic electronic and optical properties, including a layer-dependent bandgap, a strong exciton binding energy, and a direct optical access to electron valley index in momentum space. Recently, it was discovered that 2D materials with bandgaps could host quantum emitters with exceptional brightness, spectral tunability, and, in some cases, also spin properties. This review considers the recent progress in the experimental and theoretical understanding of these localized defect-like emitters in a variety of 2D materials as well as the future advantages and challenges on the path toward practical applications.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Toshiyuki Ihara ◽  
Shigehito Miki ◽  
Toshiki Yamada ◽  
Takahiro Kaji ◽  
Akira Otomo ◽  
...  

Abstract The realization of high-quality quantum emitters that can operate at room temperature is important for accelerating the application of quantum technologies, such as quantum communication, quantum information processing, and quantum metrology. In this work, we study the photon-antibunching properties on room-temperature emission from individual colloidal quantum dots (CQDs) using superconducting-nanowire single-photon detectors and temporal filtering of the photoluminescence decay curve. We find that high single-photon purities and high photon-generation rates can be simultaneously achieved by removing the signals originating from the sequential two-photon emission of biexcitons created by multiple excitation pulses. We successfully demonstrate that the ultrahigh performance of the room-temperature single-photon sources showing g(2)(0) ≪ 10−2 can be confirmed by the ultralow-dark-count detection of the temporally purified single photons. These findings provide strong evidence for the attractiveness of CQDs as candidates for high-quality room-temperature quantum light sources.


Sign in / Sign up

Export Citation Format

Share Document