scholarly journals Advances in quantum light emission from 2D materials

Nanophotonics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 2017-2032 ◽  
Author(s):  
Chitraleema Chakraborty ◽  
Nick Vamivakas ◽  
Dirk Englund

AbstractTwo-dimensional (2D) materials are being actively researched due to their exotic electronic and optical properties, including a layer-dependent bandgap, a strong exciton binding energy, and a direct optical access to electron valley index in momentum space. Recently, it was discovered that 2D materials with bandgaps could host quantum emitters with exceptional brightness, spectral tunability, and, in some cases, also spin properties. This review considers the recent progress in the experimental and theoretical understanding of these localized defect-like emitters in a variety of 2D materials as well as the future advantages and challenges on the path toward practical applications.

Nanoscale ◽  
2021 ◽  
Author(s):  
Xianghui Zhang ◽  
Andre Beyer

The discovery of graphene has triggered a great interest in inorganic as well as molecular two-dimensional (2D) materials. In this review, we summarize recent progress in the mechanical characterization of...


Author(s):  
Kai Ren ◽  
Huabing Shu ◽  
Wenyi Huo ◽  
Zhen Cui ◽  
Jin Yu ◽  
...  

Two-dimensional (2D) materials with moderate bandgap and high carrier mobility are decent for the applications in the optoelectronics. In this work, we present a systematically investigation of the mechanical, electronic...


2018 ◽  
Vol 9 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Pengzhan Sun ◽  
Renzhi Ma ◽  
Takayoshi Sasaki

An overview of recent advances in measuring and understanding the exceptionally high and anisotropic H+/OH− ion conductivities of representative 2D materials.


2021 ◽  
Author(s):  
Muhammad Aamir Iqbal ◽  
Maria Malik ◽  
Wajeehah Shahid ◽  
Waqas Ahmad ◽  
Kossi A. A. Min-Dianey ◽  
...  

Plasmonics is a technologically advanced term in condensed matter physics that describes surface plasmon resonance where surface plasmons are collective electron oscillations confined at the dielectric-metal interface and these collective excitations exhibit profound plasmonic properties in conjunction with light interaction. Surface plasmons are based on nanomaterials and their structures; therefore, semiconductors, metals, and two-dimensional (2D) nanomaterials exhibit distinct plasmonic effects due to unique confinements. Recent technical breakthroughs in characterization and material manufacturing of two-dimensional ultra-thin materials have piqued the interest of the materials industry because of their extraordinary plasmonic enhanced characteristics. The 2D plasmonic materials have great potential for photonic and optoelectronic device applications owing to their ultra-thin and strong light-emission characteristics, such as; photovoltaics, transparent electrodes, and photodetectors. Also, the light-driven reactions of 2D plasmonic materials are environmentally benign and climate-friendly for future energy generations which makes them extremely appealing for energy applications. This chapter is aimed to cover recent advances in plasmonic 2D materials (graphene, graphene oxides, hexagonal boron nitride, pnictogens, MXenes, metal oxides, and non-metals) as well as their potential for applied applications, and is divided into several sections to elaborate recent theoretical and experimental developments along with potential in photonics and energy storage industries.


Nanophotonics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 253-267 ◽  
Author(s):  
Mauro Brotons-Gisbert ◽  
Juan P. Martínez-Pastor ◽  
Guillem C. Ballesteros ◽  
Brian D. Gerardot ◽  
Juan F. Sánchez-Royo

AbstractTwo-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.


2018 ◽  
Vol 47 (2) ◽  
pp. 586-625 ◽  
Author(s):  
Yuanhong Xu ◽  
Xiaoxia Wang ◽  
Wen Ling Zhang ◽  
Fan Lv ◽  
Shaojun Guo

This review critically summarizes recent progress in the categories, synthetic routes, properties, functionalization and applications of 2D materials-based quantum dots (QDs).


2021 ◽  
Author(s):  
Mi Hee Jung

Two dimensional (2D) perovskites have a large exciton binding energy due to the structure of the quantum confinement, which produces a faster radiative recombination, so it is a promising potential...


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1192
Author(s):  
Zixin Xiong ◽  
Lei Zhong ◽  
Haotian Wang ◽  
Xiaoyan Li

Since the success of monolayer graphene exfoliation, two-dimensional (2D) materials have been extensively studied due to their unique structures and unprecedented properties. Among these fascinating studies, the most predominant focus has been on their atomic structures, defects, and mechanical behaviors and properties, which serve as the basis for the practical applications of 2D materials. In this review, we first highlight the atomic structures of various 2D materials and the structural and energy features of some common defects. We then summarize the recent advances made in experimental, computational, and theoretical studies on the mechanical properties and behaviors of 2D materials. We mainly emphasized the underlying deformation and fracture mechanisms and the influences of various defects on mechanical behaviors and properties, which boost the emergence and development of topological design and defect engineering. We also further introduce the piezoelectric and flexoelectric behaviors of specific 2D materials to address the coupling between mechanical and electronic properties in 2D materials and the interactions between 2D crystals and substrates or between different 2D monolayers in heterostructures. Finally, we provide a perspective and outlook for future studies on the mechanical behaviors and properties of 2D materials.


Author(s):  
Vipin Kumar ◽  
Aditya Dey ◽  
Siby Thomas ◽  
Mohsen Asle Zaeem ◽  
Debesh R. Roy

Most of the known two-dimensional materials lack a suitable wide-bandgap, and hydrogenation can be effectively utilized to tune the bandgap of some 2D materials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kai Ren ◽  
Ruxin Zheng ◽  
Junbin Lou ◽  
Jin Yu ◽  
Qingyun Sun ◽  
...  

Recently, expanding the applications of two-dimensional (2D) materials by constructing van der Waals (vdW) heterostructures has become very popular. In this work, the structural, electronic and optical absorption performances of the heterostructure based on AlN and Zr2CO2 monolayers are studied by first-principles simulation. It is found that AlN/Zr2CO2 heterostructure is a semiconductor with a band gap of 1.790 eV. In the meanwhile, a type-I band structure is constructed in AlN/Zr2CO2 heterostructure, which can provide a potential application of light emitting devices. The electron transfer between AlN and Zr2CO2 monolayer is calculated as 0.1603 |e| in the heterostructure, and the potential of AlN/Zr2CO2 heterostructure decreased by 0.663 eV from AlN layer to Zr2CO2 layer. Beisdes, the AlN/Zr2CO2 vdW heterostructure possesses excellent light absorption ability of in visible light region. Our research provides a theoretical guidance for the designing of advanced functional heterostructures.


Sign in / Sign up

Export Citation Format

Share Document