scholarly journals Near-infrared dual-wavelength plasmonic switching and digital metasurface unveiled by plasmonic Fano resonance

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 947-957
Author(s):  
Jie Ou ◽  
Xiao-Qing Luo ◽  
You-Lin Luo ◽  
Wei-Hua Zhu ◽  
Zhi-Yong Chen ◽  
...  

AbstractPlasmonic Fano resonance (FR) that contributes to multitudinous potential applications in subwavelength nanostructures can facilitate the realization of tunable wavelength selectivity for controlling light–matter interactions in metasurfaces. However, the plasmonic FR can be generated in metasurfaces with simple or complex geometries, and few of them can support flexible amplitude modulation and multiwavelength information transfer and processing. Here, we study the near-infrared plasmonic FR in a hybrid metasurface composed of concentrically hybridized parabolic-hole and circular-ring-aperture unit cells, which can induce polarization-dependent dual-wavelength passive plasmonic switching (PPS) and digital metasurface (DM). It is shown that the designable plasmonic FR can be realized by changing the geometric configurations of the unit cells. In particular, owing to the polarization-dependent characteristic of FR, it is possible to fulfill a compact dual-wavelength PPS with high ON/OFF ratios in the related optical communication bands. Moreover, such PPS that manipulates the amplitude response of the transmitted spectrum is an efficient way to reveal a 1-bit DM, which can also be rationally extended to a 2-bit DM or more. Our results suggest a pathway for studying polarization-dependent PPS and programmable metasurface devices, yielding possibilities for subwavelength nanostructures in optical communication and information processing.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4125
Author(s):  
Xiaoyu Yang ◽  
Ertian Hua ◽  
Hao Su ◽  
Jing Guo ◽  
Shubin Yan

Herein, a nanosensor structure is proposed, which comprises metal-insulator-metal (MIM) waveguide with stub and circular ring cavity with a stub (CRCS). The phenomenon of Fano resonance appears in the transmission spectrum, which is formed by interaction between the narrowband mode of CRCS and broadband mode of stub on bus waveguide. The influence of geometric asymmetry on mode splitting of Fano resonance was discussed. The mode splitting of Fano resonance can vastly improve figure of merit (FOM) with a sight decrease of sensitivity. The best performance of the refractive-index nanosensor is attained, which is 1420 nm/RIU with a high FOM of 76.76. Additionally, the application of designed structure on temperature sensing was investigated, which has sensitivity of 0.8 nm/°C. The proposed structure also possesses potential applications on other on-chip nanosensors.


2020 ◽  
pp. 2001784
Author(s):  
Yazhong Wang ◽  
Bernhard Siegmund ◽  
Zheng Tang ◽  
Zaifei Ma ◽  
Jonas Kublitski ◽  
...  

2021 ◽  
pp. 150094
Author(s):  
Jin Wang Writing - Original Draf ◽  
Xue-Qiong Su ◽  
Dong-Wen Gao ◽  
Rui-Xiang Chen ◽  
Yun-Yun Mu ◽  
...  

2008 ◽  
Vol 47 (4) ◽  
pp. 2921-2923 ◽  
Author(s):  
Daisuke Okamoto ◽  
Junichi Fujikata ◽  
Kenichi Nishi ◽  
Keishi Ohashi

2021 ◽  
Vol 8 ◽  
Author(s):  
Leeann R. Pavlek ◽  
Clifford Mueller ◽  
Maria R. Jebbia ◽  
Matthew J. Kielt ◽  
Omid Fathi

With advances in neonatal care, survival of premature infants at the limits of viability has improved significantly. Despite these improvement in mortality, infants born at 22–24 weeks gestation are at a very high risk for short- and long-term morbidities associated with prematurity. Many of these diseases have been attributed to abnormalities of tissue oxygenation and perfusion. Near-infrared spectroscopy utilizes the unique absorption properties of oxyhemoglobin and deoxyhemoglobin to provide an assessment of regional tissue oxygen saturation, which can be used to calculate the fractional tissue oxygen extraction. This allows for a non-invasive way to monitor tissue oxygen consumption and enables targeted hemodynamic management. This mini-review provides a brief and complete overview of the background and physiology of near-infrared spectroscopy, practical use in extremely preterm infants, and potential applications in the neonatal intensive care unit. In this mini-review, we aim to summarize the three primary application sites for near-infrared spectroscopy, disease-specific indications, and available literature regarding use in extremely preterm infants.


2016 ◽  
Vol 12 (S329) ◽  
pp. 454-454
Author(s):  
Michael Wegner ◽  
Ralf Bender ◽  
Ray Sharples ◽  

AbstractKMOS, the “K-Band Multi-Object Spectrometer”, was built by a British-German consortium as a second generation instrument for the ESO Paranal Observatory. It is available to the user community since its successful commissioning in 2013 (Sharples et al. 2013). As a multi-object integral field spectrometer for the near infrared, KMOS offers 24 deployable IFUs of 2.8x2.8 arcsec and 14x14 spatial pixels each, which can either be placed individually within a 7.2 arcmin field of view or combined in a Mosaic mode in order to map contiguous fields on sky. The instrument covers the whole range of NIR atmospheric windows (0.8. . .2.5μm) with 5 spectral bands and a resolution of R ≈ 3000. . .4000.Although the main science driver for KMOS was to enable the study of galaxy formation and evolution through multiplexed observations of high-redshift galaxies, KMOS also already exhibited its tremendous potential for the spectroscopy of massive stars: A quantitative study of 27 RSGs in NGC 300 (Gazak et al. 2015) proves its applicability for the spectroscopy of individual stars even beyond the Local Group. A Mosaic observation of the Galactic centre (Feldmeier-Krause et al. 2015) demonstrates how spectra of early-type stars can be extracted from a contiguous field. Other applications include (but need not be limited to) velocity determinations of globular cluster stars, observations of jets/outflows of high mass protostars, or contiguous mapping of star-forming regions.We therefore aim at presenting the excellent capabilities of KMOS to a wider community and indicate potential applications.


2019 ◽  
Vol 9 (3) ◽  
pp. 166-217 ◽  
Author(s):  
Gangadharan A. Kumar

In this review, we discuss the rational design of a new class of lanthanide-doped organometallic nanostructured materials called `molecular minerals`. Molecular minerals are nanostructured materials with a ceramic core made from chalcogenide groups and other heavy metals. Part of the central core atoms is replaced by suitable lanthanide atoms to impart fluorescent spectral properties. The ceramic core is surrounded by various types of organic networks thus making the structure partly ceramic and organic. The central core has superior optical properties and the surrounding organic ligand makes it easy to dissolve several kinds of organic solvents and fluoropolymers to make several kinds of active and passive photonic devices. This chapter starts with elaborate design strategies of lanthanidebased near-infrared emitting materials followed by the experimental results of selected near-infrared emitting lanthanide clusters. Finally, their potential applications in telecommunication, light-emitting diodes and medical imaging are discussed.


Sign in / Sign up

Export Citation Format

Share Document