transmitted spectrum
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 103
Author(s):  
Haiming Qiu ◽  
Chunyu Zhao ◽  
Xuehao Hu ◽  
Haijin Chen ◽  
Qianqing Yu ◽  
...  

In this paper, we propose an in-fiber Mach–Zehnder temperature sensor based on a dual-core fiber with an eccentric core and a central core. The latter one is beside a fluidic channel embedded in the fiber. The effective refractive index of the guided mode in the central core could be influenced by the glycerol–water solution filled in the fluidic channel. Thus, the transmitted spectrum of the sensor is shifted as a function of temperature. By monitoring the selected spectral dip shifts, an experimental sensitivity of 2.77 nm/°C is obtained in the range of 25 to 40 °C for a solution length of 15 cm. To further improve the temperature sensitivity, the solution length is increased up to 29.5 cm, and a higher sensitivity of 5.69 nm/°C is achieved in the same temperature range. The experimental results agree well with the theoretical ones. The proposed sensor has good robustness and stability, which makes it promising for applications of high precision temperature monitoring.


2021 ◽  
Vol 42 (3) ◽  
pp. 488-493
Author(s):  
WANG Cailing ◽  
◽  
◽  
ZHANG Yuchun ◽  
WANG Jingyi

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 947-957
Author(s):  
Jie Ou ◽  
Xiao-Qing Luo ◽  
You-Lin Luo ◽  
Wei-Hua Zhu ◽  
Zhi-Yong Chen ◽  
...  

AbstractPlasmonic Fano resonance (FR) that contributes to multitudinous potential applications in subwavelength nanostructures can facilitate the realization of tunable wavelength selectivity for controlling light–matter interactions in metasurfaces. However, the plasmonic FR can be generated in metasurfaces with simple or complex geometries, and few of them can support flexible amplitude modulation and multiwavelength information transfer and processing. Here, we study the near-infrared plasmonic FR in a hybrid metasurface composed of concentrically hybridized parabolic-hole and circular-ring-aperture unit cells, which can induce polarization-dependent dual-wavelength passive plasmonic switching (PPS) and digital metasurface (DM). It is shown that the designable plasmonic FR can be realized by changing the geometric configurations of the unit cells. In particular, owing to the polarization-dependent characteristic of FR, it is possible to fulfill a compact dual-wavelength PPS with high ON/OFF ratios in the related optical communication bands. Moreover, such PPS that manipulates the amplitude response of the transmitted spectrum is an efficient way to reveal a 1-bit DM, which can also be rationally extended to a 2-bit DM or more. Our results suggest a pathway for studying polarization-dependent PPS and programmable metasurface devices, yielding possibilities for subwavelength nanostructures in optical communication and information processing.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 465
Author(s):  
Yuqi Han ◽  
Yan Jiang ◽  
Wei Guo

Cholesteric liquid crystals (CLCs) are sensitive to environmental temperature changes, and have been employed as a specific intermediary for biosensors. Considering the temperature-dependent structural changes of CLCs, this study aimed to determine the sensing properties of side-polished fibers (SPFs) after coating with CLCs. The experimental results demonstrated that, with regard to the transmitted spectrum, the loss peak of CLC-coated SPFs exhibited a positive linear relationship with temperature changes over a range of 20 to 50 °C. The linear correlation coefficient achieved 97.8% when the temperature increased by 10 °C, and the loss peak drifted by 12.72 nm. The reflectance spectrum of CLCs coated on the polished surface were obtained using optical fiber sensors. The feasibility of measuring the helical structure of CLCs was further verified using SPF transmission spectroscopy. The findings indicated that the transmitted spectrum of SPFs could be adopted to characterize the helical structure of CLCs, which lays a solid foundation for further study on SPF-based biosensors.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 885 ◽  
Author(s):  
Panagiotis Moraitis ◽  
Gijs Leeuwen ◽  
Wilfried Sark

The luminescent solar concentrator (LSC) is a promising concept for the integration of photovoltaic (PV) generators into the building envelope. Having the form of semitransparent plates, LSCs offer a high degree of flexibility and can be used as windows or facades, as part of the of building-integrated photovoltaic (BIPV) industry. Existing performance characterizations of LSC devices focus almost exclusively on electric power generation. However, when used as window components, the transmitted spectrum can alter the color, potentially affecting the visual comfort of the occupants by altering the properties of the sunlight. In this study, eight different state-of-the-art nanocrystals are evaluated as potential candidates for LSC window luminophores, using Monte Carlo simulations. The transparency of each LSC window varies between 90% and 50%, and the color-rendering properties are assessed with respect to the color rendering index (CRI) and the correlated color temperature (CCT). It is found that luminophores with a wide absorption bandwidth in the visible spectrum can maintain a high CRI value (above 85) and CCT values close to the Planckian locus, even for high luminophore concentrations. In contrast, luminophores that only absorb partly in the visible spectrum suffer from color distortion, a situation characterized by low CCT and CRI values, even at high transmittance.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
René Domínguez-Cruz ◽  
Daniel A. May-Arrioja ◽  
Rodolfo Martínez-Manuel ◽  
Daniel Lopez-Cortes

We report in this paper a temperature sensor based on an asymmetric two-hole fiber (ATHF) using a Sagnac interferometer (SI) configuration. The operation principle is based on the birefringence change induced by the temperature difference between the air holes and the silica fiber. As a result, the transmitted spectrum of the SI exhibits a sinusoidal profile which is shifted when the temperature is increased. A linear wavelength shift as a function of temperature is observed, and a sensitivity of 2.22 nm/°C was achieved using a 2 m long asymmetric THF, which is in the same order as those previously reported using similar microstructured fibers. The advantage of this system is a linear response, the use of a microstructured fiber with a simpler transverse geometry, and the use of bigger holes which can facilitate the insertion of several materials and improve the sensitivity of the sensor for different applications.


Sign in / Sign up

Export Citation Format

Share Document