scholarly journals Plasmonic metasurfaces manipulating the two spin components from spin–orbit interactions of light with lattice field generations

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruirui Zhang ◽  
Manna Gu ◽  
Rui Sun ◽  
Xiangyu Zeng ◽  
Yuqin Zhang ◽  
...  

Abstract Artificial nanostructures in metasurfaces induce strong spin–orbit interactions (SOIs), by which incident circularly polarized light can be transformed into two opposite spin components. The component with an opposite helicity to the incident light acquires a geometric phase and is used to realize the versatile functions of the metasurfaces; however, the other component, with an identical helicity, is often neglected as a diffused background. Here, by simultaneously manipulating the two spin components originating from the SOI in plasmonic metasurfaces, independent wavefields in the primary and converted spin channels are achieved; the wavefield in the primary channel is controlled by tailoring the dynamic phase, and that in the converted channel is regulated by designing the Pancharatnam–Berry phase in concurrence with the dynamic phase. The scheme is realized by generating optical lattice fields with different topologies in two spin channels, with the metasurfaces composed of metal nanoslits within six round-apertures mimicking the multi-beam interference. This study demonstrates independent optical fields in a dual-spin channel based on the SOI effect in the metasurface, which provides a higher polarization degree of freedom to modify optical properties at the subwavelength scale.

2019 ◽  
Vol 116 (10) ◽  
pp. 4006-4011 ◽  
Author(s):  
H.-H. Kung ◽  
A. P. Goyal ◽  
D. L. Maslov ◽  
X. Wang ◽  
A. Lee ◽  
...  

The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin–orbit interaction in solids composed of heavy elements. Here, we study the composite particles—chiral excitons—formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical 3D TI,Bi2Se3. Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of millielectronvolts, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin–orbit coupling. A theoretical model based on this proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin–orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Boxuan Gao ◽  
Jeroen Beeckman ◽  
Kristiaan Neyts

We demonstrate a laser beam combiner based on four photo-patterned Pancharatnam–Berry (PB) phase gratings, which is compact and has high diffraction efficiency for incident circularly polarized light. The nematic liquid crystal mixture E7 is used as anisotropic material, and the thickness of the layer is controlled by spacers. The beam combiner can bring two parallel laser beams closer to each other while remaining parallel. This work shows the potential to realize components based on flat optical LC devices.


The iridescent cuticle of certain Rutelino scarab beetles, which is a form optically active and selectively reflects circularly polarized light, incorporates an NH 4 OH -extractable component The ultraviolet absorption spectrum of this component, together with its chromatographic and refractive properties, identify it as uric acid (2,6,8-trihydroxypurine). All species of Plusiotis examined have uric acid in their reflecting layers, as do several species of Anoplognathus. Plusiotis resplendens has a reflecting layer with a uric acid volume fraction of 0.7, P . optima a volume fraction of 0.6. The reflecting layer of P . resplenden s has an anticlockwise helicoidal architecture, the optical thickness of the helicoidal p itch being such that it constructively interferes with visible light wavelengths. An anticlockwise helicoid constructively interferes with only the left circularly polarized component of incident light, right circularly polarized light being transmitted without attenuation. P. resplendens has a 1.8 /xm thick unidirectional layer embedded within the helicoid which functions as a perfect halfwave retardation plate for wavelength 590 nm . This halfwave plate enables the helicoidal reflector in this species to reflect both left and right circularly polarized components of incident light. After passing through the halfwave plate, transmitted right circularly polarized light becomes left circularly polarized ; this light is now reflected and emerges from the cuticle right circularly polarized, after passing back through the halfwave plate. Consequently the total reflectivity of circularly polarized incident light is greater in P. resplendens than in any other species examined; the plate also reduces multiple internal reflexions. Interferometric analysis of the refractive properties of the helicoidal reflectors in species of Plusiotis showed that the ordered incorporation of uric acid increases the birefringence of the system by a factor of five times, e.g. the in tact birefringence of the unidirectional layer of P . resplendens is 0.166 at wavelength 560 nm ; after uric acid extraction the birefringence is reduced to 0.034. As the coefficient of reflexion of a helicoidal reflector is directly proportional to the birefringence of the individual planes comprising the helicoid, beetles incorporating uric acid into their reflecting surfaces reflect circularly polarized light far more efficiently than beetles lacking uric acid. Refractive index values for a single multicomponent plane of the helicoid have been summarized as a biaxial indicatrix, with the Z axis tilte dat 45° to the plane of the epicuticle. Beetle reflecting layers which incorporate uric acid have twenty times greater optical rotatory power compared with reflecting layers lacking this component. Mathematical treatments dealing with helicoidal reflectors predict the form optical rotatory power to be a function of the square of the birefringence, which is in agreement with the experimental observations. To enable uric acid to have the optical effects mentioned above, an epitaxial incorporation into the helicoidal framework is necessary. Although uric acid is a common cytoplasmic reflecting material in arthropods, this is the first record of its presence in an extracellular (cuticular) reflector.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yongkang Song ◽  
Weici Liu ◽  
Xiaolei Wang ◽  
Faqiang Wang ◽  
Zhongchao Wei ◽  
...  

Metasurfaces have powerful light field manipulation capabilities, which have been extensively studied in the past few years and have developed rapidly in various fields. At present, the focus of metasurface research has shifted to the tunable functionality. In this paper, a temperature-controllable multifunctional metasurface lens based on phase transition material is designed. First of all, by controlling the temperature of the desired working area and the polarization of the incident light, switching among multiple focus, single focus, and no focus at any position can be achieved, and the intensity and helicity of the output light can be adjusted. In addition, a polarization-sensitive intensity-tunable metalens based on the P-B phase principle is designed, when the incident light is linearly polarized light, left-handed circularly polarized light, or right-handed circularly polarized light, it has the same focal point but with different light field intensities. Therefore, the focused intensity can be tunable by the polarization state of the incident light.


2021 ◽  
Author(s):  
Alexander Aguirre-Perez ◽  
Rajagopal Shyamala Joshya ◽  
Helene Carrere ◽  
Xavier Marie ◽  
Thierry Amand ◽  
...  

Abstract We demonstrate the application of a two stage machine learning algorithm that enables to correlate the electrical signals from a GaAsxN1-x circular polarimeter with the intensity, degree of circular polarization and handedness of an incident light beam. Specifically, we employ a multimodal logistic regression to discriminate the handedness of light and a 6-layer neural network to establish the relationship between the input voltages, the intensity and degree of circular polarization. We have developed a particular neural network training strategy that substantially improves the accuracy of the device. The algorithm was trained and tested on theoretically generated photoconductivity and on photoluminescence experimental results. Even for a small training experimental dataset (70 instances), it is shown that the proposed algorithm correctly predicts linear, right and left circularly polarized light misclassifying less than 1.5% of the cases and attains an accuracy larger than 97% in the vast majority of the predictions (92%) for intensity and degree of circular polarization. These numbers are significantly improved for the larger theoretically generated datasets (4851 instances). The algorithm is versatile enough that it can be easily adjusted to other device configurations where a map needs to be established between the input parameters and the device response. Training and testing data files as well as the algorithm are provided as supplementary material.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 741-748
Author(s):  
Qiong He ◽  
Fei Zhang ◽  
MingBo Pu ◽  
XiaoLiang Ma ◽  
Xiong Li ◽  
...  

AbstractSpatial differentiator is the key element for edge detection, which is indispensable in image processing, computer vision involving image recognition, image restoration, image compression, and so on. Spatial differentiators based on metasurfaces are simpler and more compact compared with traditional bulky optical analog differentiators. However, most of them still rely on complex optical systems, leading to the degraded compactness and efficiency of the edge detection systems. To further reduce the complexity of the edge detection system, a monolithic metasurface spatial differentiator is demonstrated based on asymmetric photonic spin-orbit interactions. Edge detection can be accomplished via such a monolithic metasurface using the polarization degree. Experimental results show that the designed monolithic spatial differentiator works in a broadband range. Moreover, 2D edge detection is experimentally demonstrated by the proposed monolithic metasurface. The proposed design can be applied at visible and near-infrared wavelengths by proper dielectric materials and designs. We envision this approach may find potential applications in optical analog computing on compact optical platforms.


2020 ◽  
Vol 34 (16) ◽  
pp. 2050181
Author(s):  
Liang Chen

In this paper, we study Hall effects of the monolayer MoS2 with Rashba and Ising spin-orbit coupling (SOC) under the application of a circularly polarized light. The Chern number and spin textures at high frequency regime are studied based on the Floquet theory. We found that the SOCs induced valley Hall effect. The sign of Chern numbers at high frequency regime can be reversed by engineering interplay between Ising SOC and light intensity. The system undergoes a topological phase transition from valley Hall state to anomalous Hall state. By analyzing the spin texture, we study the origin of the Hall effects.


Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 909-920 ◽  
Author(s):  
Ranran Zhang ◽  
Qiuling Zhao ◽  
Xia Wang ◽  
Wensheng Gao ◽  
Jensen Li ◽  
...  

AbstractThe ability of chiral media to differentiate circularly polarized light is conventionally characterized by circular dichroism (CD) which is based on the difference in the absorption of the incident light for different polarizations. Thus, CD probes the bulk properties of chiral media. Here, we introduce a new approach termed as circular phase-dichroism that is based on the surface properties and is defined as the difference of the reflection phase for different circularly polarized incident lights in characterizing chiral media. As a demonstration, we measure the reflection phase from planar chiral sawtooth metasurface for circularly polarized light in the visible range using a simple Fabry Perot interference technique. The measured circular phase-dichroism is also crosschecked by conventional CD measurement of the transmitted light and by full-wave simulations. Our results demonstrate the potential applications of circular phase-dichroism in sensing and metasurface characterizations.


Sign in / Sign up

Export Citation Format

Share Document