The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt

2021 ◽  
Vol 10 (1) ◽  
pp. 1253-1265
Author(s):  
Zhenxia Li ◽  
Tengteng Guo ◽  
Yukun Chen ◽  
Qi Liu ◽  
Yuanzhao Chen

Abstract To solve the problem of the pavement being aged due to the influence of temperature, light and other environmental factors are brought in service. Nano-CaCO3 surface was activated by 6% KH-550, and nano-ZnO surface was activated by 6% aluminate. Nano-CaCO3/nano-ZnO/SBR composite-modified asphalt was prepared. The optimum proportion of composite-modified asphalt was determined by orthogonal test. The influence of modifiers on asphalt pavement performance was comprehensively studied. The microstructure of composite-modified asphalt was characterized by scanning electron microscopy and infrared spectroscopy. The mechanism of composite-modified asphalt was analyzed. The results show that the optimum combination of composite-modified asphalt is 4% nano-CaCO3 + 5% nano-ZnO + 4% SBR, the aging performance of the composite-modified asphalt is reduced by 6.9%, and the viscosity is increased by 14.6–23.1%. The complex shear modulus is increased by 24.1% at 82°C, the stiffness modulus is decreased, on average, by 21.1%. and the creep curve slope is increased by 9% on average. In the meantime, during the preparation process of composite-modified asphalt, it mainly occurred due to chemical reaction with surface-modified nanomaterials and physical change with SBR polymer materials.

2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Md. Maniruzzaman A. Aziz ◽  
Ahmed Wsoo Hamad ◽  
Abdulmalik Musa Maleka ◽  
Fauzan Mohd Jakarni

This paper dealt with the viscoelastic behavior of Cellulose Oil Palm Fiber (COPF) modified 60-70 penetration grade asphalt binder for the deterioration of roads. The main objective of this study was to investigate the effect of various COPF contents on the physical and the rheological properties of penetration grade 60-70 asphalt binder. Laboratory tests performed comprised of viscosity, penetration, softening point, short & long term ageing, as well as complex shear modulus (G*).  The COPF was blended in 0.2, 0.4, 0.6, 0.8, and 1.0% by weight of asphalt binder, including 0% as control. The COPF modified asphalt binder showed an increasing viscosity and softening point with the increase of COPF content, whereas the penetration decreased as the COPF was increased for the binder. The complex shear modulus (G*), rutting factor (G*/sin δ), and fatigue factor (G*sin δ) showed significant improvement for the modified samples compared to the unmodified samples. The results indicated that the COPF modified asphalt binder had high potential to resist permanent (rutting) deformation and fatigue cracking than the unmodified sample. 


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
E. Shaffie ◽  
J. Ahmad ◽  
A. K. Arshad ◽  
D. Kamarun

In this paper, the effects of nanopolyacrylate (NP) in binder modification on the empirical and rheological characteristics of the conventional binder were explored. The empirical and rheological binder properties were characterized using penetration, softening point, viscosity and dynamic shear rheometer (DSR) respectively.  These testings have become useful methods in characterizing of the binder performance on the pavement. The results indicated that NP polymer modification improved the physical properties of the conventional binder such as; penetration, softening point and temperature susceptibility. The results of viscosity test show that the NP polymer modified binder is more viscous than unmodified binder where viscosity increases with the increment of polymer content. The DSR results indicate that the NP polymer improves rheological properties of conventional binder, i.e. increasing the complex shear modulus (G∗) values and rutting parameters (G∗/sin δ), as well as decreasing the phase angle (δ) values. Therefore, it can be concluded that NP polymers considerably improves elastic properties and rutting resistance of binder and thus could be used for enhancing the asphalt pavement performance.


2015 ◽  
Vol 77 (23) ◽  
Author(s):  
M. Naqiuddin M. Warid ◽  
Mohd Rosli Hainin ◽  
Haryati Yaacob ◽  
Md. Maniruzzaman A. Aziz ◽  
Mohd Khairul Idham ◽  
...  

One of the main issues with cold mix asphalt (CMA) mixtures is having poor abrasion resistance with low cohesion, longer curing time and low elasticity. SBR is used to improve the rheological properties of the asphalt emulsion. This paper evaluates the effect of using different percentages of SBR in unaged slow-setting emulsion (SS-1K) in CMA. These modified emulsions were blended at various percentages, i.e. 2%, 4%, 6%, 8% and 10% of the weight of asphalt emulsion. The investigation focused on the rheological aspect which correlates the properties of unaged modified asphalt emulsion with its performance. Dynamic Shear Rheometer test (DSR) was used to measure the parameters of complex shear modulus, G* and phase angle, δ of the asphalt samples. Based on the results, it shows that by adding SBR in the asphalt emulsion improve the rutting resistance. From the isochronal curve, the complex modulus, G* of the modified emulsions was found higher than the unmodified emulsion. The modified emulsions show signs of improvement in binder properties in terms of elastic deformation and viscosity reduction. Therefore, it can be concluded that the SBR could improve the performance of the asphalt emulsion used in CMA.


2021 ◽  
Vol 233 ◽  
pp. 01104
Author(s):  
Xin Fu ◽  
Mao He ◽  
Yuancai Liu

In order to study the aging process of lignin-modified asphalt and explore the effect of lignin on the anti-aging performance of base asphalt, 4 sets of lignin-modified asphalt were prepared under different base asphalt, different dosage, temperature and time. Based on the thermal oxidation test (TFOT), dynamic shear rheological test (DSR), thermogravimetric test (TG), and infrared spectroscopy micro-performance test (FTIR), the high-temperature rheological properties and performance of aging lignin-based asphalt with different content were investigated. The changing law of the chemical properties of functional groups. The results show that the addition of lignin to the base asphalt sample increases the complex shear modulus G* and decreases the phase angle δ compared to the base asphalt sample prepared by the same sample preparation process. In the same sample, with the continuous increase of the test temperature, the complex shear modulus G* of the matrix asphalt before or after aging and the modified asphalt with different content of lignin showed a downward trend. The modification mechanism of lignin on asphalt is essentially that lignin decomposes and reacts with oxygen in the process of thermal oxidative aging, which delays the oxidation reaction of asphalt during aging, so as to achieve the anti-aging effect of asphalt.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Hashim Raza Rizvi ◽  
Mohammad Jamal Khattak ◽  
August A. Gallo

Asphalt has been modified for the past several decades using various additives, including synthetic polymers. Polymer modification improves structural and engineering characteristics of the binder, which is a result of improvement in rheological characteristics of binder as well as its adhesion capability with the aggregate. Such enhancement inevitably enhances the performance characteristics of hot mix asphalts (HMA) such as fatigue life, resistance to rutting, and thermal cracking. Even though polymer-modified HMA is popular in North America and European countries, its use is still limited in developing countries of Southeast Asia due to high costs associated with its manufacturing, processing, and energy consumption. In this study, a new kind of asphalt modifier derived from animal wastes, such as bones, hides, and flesh commonly known as Bone Glue, is studied. This biomaterial which is a by-product of food and cattle industries is cheap, conveniently available, and produced locally in developing countries. The results of the research study showed that the bone glue can easily be mixed with asphalt without significantly altering the asphalt binder’s viscosity and mixing and compaction temperatures of HMA. Additionally, improvements in complex shear modulus for a range of temperatures were also determined and it was found that complex shear modulus was improved by bone glue modification.


1967 ◽  
Vol 34 (1) ◽  
pp. 187-194
Author(s):  
Paul Hertelendy ◽  
Werner Goldsmith

The flexural-vibration characteristics of a symmetric, doubly infinite composite plate consisting of two outer layers of a linear viscoelastic material bonded to an elastic core have been examined, the viscous effects in the coating being represented by a complex shear modulus. Calculations of the dispersive and damping effects have been obtained for the lowest three modes by an extension of the exact Rayleigh-Lamb equations. Loss factors of the lowest modes have also been evaluated by two readily computed approximate methods; the results have been compared with those from the exact solution. The material constants were chosen to be representative of a high-polymer coating and an aluminum core. The modal behavior of the systems and coupling effects are discussed.


Sign in / Sign up

Export Citation Format

Share Document