scholarly journals Mechanical, morphological, and fracture-deformation behavior of MWCNTs-reinforced (Al–Cu–Mg–T351) alloy cast nanocomposites fabricated by optimized mechanical milling and powder metallurgy techniques

2021 ◽  
Vol 11 (1) ◽  
pp. 65-85
Author(s):  
Shubham Sharma ◽  
Vikas Patyal ◽  
P. Sudhakara ◽  
Jujhar Singh ◽  
Michal Petru ◽  
...  

Abstract The carbon nanotube (CNT) is becoming more popular due to their low-density, high-strength etc. Among CNTs, multi-walled carbon nanotubes (MWCNTs) are gaining more importance due to their enhanced thermal and electrical conductivity. The present research is exploring the applicability of MWCNTs reinforced with AA2024-T351 alloys for electromechanical applications. This study is currently undertaken for using MWCNTs as a reinforcing particulate for the purpose to enhance the characteristics including low density, high strength, and hardness together with excellent thermal and electrical conductivity of the aluminum alloy matrices. Therefore, this article provides a state-of-the-art experimental approach to fabricate and furthermore, to evaluate the mechanical characteristics, microstructural analysis, and fatigue behavior of Al–Cu–Mg–T351/MWCNT composites under both the mechanical and thermal loading by utilizing powder technology processing route. The uniform dispersion of CNTs has been exposed using ball milling process. Results revealed that the MWCNTs provide extraordinary synergistic strength, enhances fatigue resistance, creep resistance, ductility, and other mechanical characteristics of the aluminum-based composites. The mechanical loading of the composite exhibited increased properties as compared to thermal-loaded aluminum-MWCNT composites. Findings conclude that the maximum hardness of 35Hv obtained for sintered AA2024-T351 and 45Hv for 0.5% MWCNT heat-treated samples indicate that the addition of MWCNT enhances the hardness which may be because CNT is evenly dispersed at the interfacial space. Maximum UTS of 105.21 MPa was obtained with 0.5% MWCNT for sintered composites. Microstructural analysis of the Al–Cu–Mg–T351/MWCNTs composite exhibits reasonably uniform distribution, void formation, and good interfacial bonding. X-ray Diffraction method patterns of fabricated composite shows that the CNT is present at 2β = 23.6 and 44.6°, whereas high peaks of aluminum are present at uniform dispersed positions. Transmission electron magnifying instrument study further substantiates the above research. Fracture micrographs of the Al–Cu–Mg–T351/MWCNTs composite portray the resistant nature of the nanotubes due to the presence of CNTs, Al–Cu, and aluminum carbide elements in the alloy and the reactions that happened during heat treatment. This significant improvement was attributed to the shear interactions among the constituents and high load carrying capacity of the CNT, uniform dispersion, and interface bond strength among the matrix and constituents. The findings in the study will undoubtedly be beneficial for the development of high-strength, MWCNTs/Al–Cu–Mg–T351, matrix composites in future for multifunctional applications on broader spectrum.

2020 ◽  
Vol 11 (3) ◽  
pp. 101-105
Author(s):  
Daria A. Kalabina ◽  
Grigorij I. Yakovlev ◽  
Zdenek Dufek ◽  
Grigoriy N. Pervushin ◽  
Kirill A. Bazhenov ◽  
...  

The influence of a plasticizer based on polycarboxylate esters on the properties of a high-strength fluoroanhydrite composition and a lightweight composition with expanded perlite sand is investigated. It was shown that the addition of 2% polycarboxylate esters on water base to compositions has increased compressive strength and a flexural strength up to 46% and 20% respectively compare to composite without any additives. Due to the structure’s compaction of the compositions, water absorption decreased and the water resistance of the material increased. Microstructural analysis of the compositions confirmed the improvement of physical and mechanical characteristics by changing the morphology of crystallohydrate formations, increasing the contact area between new formations and modifying the structure by carbon nanotubes. The developed mixtures are supposed to be apply for self-leveling fluid mixtures for floors with reduced thermal conductivity.


2021 ◽  
Author(s):  
Michael G. Fahrmann

Abstract HAYNES® 244® alloy was chiefly developed to address the need for high-strength, low coefficient of thermal expansion (CTE) alloys for seal rings and cases in advanced gas turbine engines. In addition to these attributes, adequate resistance to low-cycle fatigue (LCF) due to cyclic thermal and mechanical loading during service is critical for such applications. The isothermal LCF performance of commercially produced 0.5” (12.5 mm) thick, fully heat treated plate products of 244 alloy was evaluated by means of axial strain-controlled (R = −1) LCF tests covering total strain ranges up to 1.25 % (without dwells), at temperatures ranging from 800–1400°F (427–760°C). In addition, the comparative LCF performance of Waspaloy, a well-established alloy for turbine cases, was evaluated under selected, nominally identical test conditions. S-N curves were constructed and fitted by the Coffin-Manson equation, allowing the delineation of regimes controlled by the elastic and plastic response of the material. Fracture surfaces were examined in the scanning electron microscope to identify fatigue crack initiation sites and crack propagation modes. Differences between the alloys are discussed in terms of tensile strength and cyclic hardening/softening behavior. Implications for fatigue performance of these alloys under cyclic thermal loading conditions are discussed as well.


Author(s):  
Mina Bastwros ◽  
Gap-Yong Kim ◽  
Kun Zhang ◽  
Shiren Wang

A composite made of graphene and aluminum is a promising material for many engineering applications due to its lightweight and relatively high strength properties. Unfortunately, the uniform dispersion of the graphene is considered one of the big challenges since the graphene clusters tend to deteriorate the mechanical properties of the composite. In this study, a graphene reinforced Al6061 composite has been investigated. The composites are fabricated by ball milling the graphene flakes and the Al6061 powder, followed by hot compaction in the semi-solid regime of the Al6061. In addition, a graphene reinforced composite with localized reinforced zones within the composite was also investigated The mechanical properties of the composites are measured by conducting a bend test, and microstructural analysis of the composite and fracture surfaces are performed. According to the bending test results, an enhancement in the strength is clearly observed.


Author(s):  
Rajesh Prasanna ◽  
David L. McDowell

It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Of particular interest here are the residual stresses induced through shot peening process. Compressive residual stresses of high magnitudes are induced at and near the surface during shot peening process by virtue of constrained plastic deformation. These stresses enhance the service life of component by resisting fatigue crack nucleation and growth on surface of the specimen. Unfortunately, these residual stresses can relax significantly due to subsequent mechanical and/or thermal loading even under normal operating conditions.


Alloy Digest ◽  
2008 ◽  
Vol 57 (10) ◽  

Abstract Swissmetal alloys C97 and C98 attain high strength by aging after cold working. The alloys are free machining and maintain a high electrical conductivity. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: CU-759. Producer or source: Avins Industrial Products.


Alloy Digest ◽  
1984 ◽  
Vol 33 (10) ◽  

Abstract Copper Alloy No. C19200 is a high-copper alloy with relatively high strength and electrical conductivity. It has good hot forgeability and good capacity for being cold worked. Among its many uses are applications requiring resistance to softening and stress corrosion, automotive hydraulic brake lines, cable wrap, eyelets, flexible hose and fuse clips. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-485. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1965 ◽  
Vol 14 (9) ◽  

Abstract MALLORY 53B is an economical copper alloy combining high strength with high heat and electrical conductivity and excellent corrosion resistance. It is heat treatable. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Cu-155. Producer or source: P. R. Mallory & Company Inc..


Alloy Digest ◽  
1988 ◽  
Vol 37 (3) ◽  

Abstract UNS NO. A96101 in the heat treated condition is used primarily for enclosed bus conductor where both high strength and high electrical conductivity are desirable. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-287. Producer or source: Various aluminum companies.


Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


Sign in / Sign up

Export Citation Format

Share Document