scholarly journals Synthesis and characterization of iron oxide magnetic nanoparticles

Nukleonika ◽  
2017 ◽  
Vol 62 (2) ◽  
pp. 73-77 ◽  
Author(s):  
Zbigniew Surowiec ◽  
Mieczysław Budzyński ◽  
Katarzyna Durak ◽  
Grzegorz Czernel

Abstract Small particles of magnetite, i.e. 7.5, 13.4 and 14.1 nm in diameter, were obtained by the method of co-precipitation. The crystal structure and size distributions were determined by means of transmission electron microscopy and X-ray diffraction. The magnetic properties of the nanoparticles were tested by Mössbauer spectroscopy within the temperature range from 3 K to room temperature (RT). The Mössbauer study of magnetic nanoparticles reveals relaxation behaviour related to the existence of the superparamagnetic phase. The blocking temperature depends on the sizes of the nanoparticles and the ammonia concentration.

2014 ◽  
Vol 70 (6) ◽  
pp. 1004-1010 ◽  
Author(s):  
Th. I. Shalaby ◽  
N. M. Fikrt ◽  
M. M. Mohamed ◽  
M. F. El Kady

This study investigated the applicability of magnetite Fe3O4 nanoparticles coated with chitosan (CMNs) for the removal of some toxic heavy metals from simulated wastewater. Magnetic nanomaterials were synthesized using the co-precipitation method and characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, and Fourier transformer infrared spectroscopy. The magnetic properties of the prepared magnetic nanoparticles were determined by a vibrating-sample magnetometer. Batch experiments were carried out to determine the adsorption kinetics of Cr(VI) and Cd(II) by magnetic nanoparticles. It is noteworthy that CMNs show a highly efficient adsorption capacity for low concentration Cr(VI) and Cd(II) ions solution, which can reach 98% within 10 min.


2012 ◽  
Vol 16 ◽  
pp. 43-48 ◽  
Author(s):  
Mirabdullah Seyed Sadjadi ◽  
F. Fathi ◽  
Nazanin Farhadyar ◽  
K. Zare

Magnetic iron oxide nanoparticles with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection and cell/protein separations. In this work, silica coated iron oxide magnetic nanoparticles, which are very useful for delivering chemotherapeutic drugs, has been prepared by precipitation in an aqueous solution of iron (II) and iron (III) chlorides under basic condition. In this process, polyvinylpyrrolidone (PVP) has been used as a stablizer. Surface modifications of the as-prepared Fe3O4 Nps have been carried out by using tetraethoxysilane (TEOS). Silica coated nanoparticles have been characterized by Fourier transform infrared (FTIR) spectroscopy, Powder X- ray diffraction (XRD), Transmission electron microscopy (TEM) and Infrared (IR) spectroscopy


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2769-2773
Author(s):  
Morales P. Patricio ◽  
Moncayo H. José María ◽  
García R. Miguel ◽  
Santoyo S. Jaime

ABSTRACTMagnetic nanoparticles were obtained by chemical coprecipitation technique from aqueous solutions of iron salts, the synthesis was carried out in an alkaline medium, obtaining magnetic nanoparticles of around 2-10 nm in size. The nanoparticles obtained were stabilized with polyvinylpirrolidone (PVP), the particle size was measured by transmission electron microscopy (TEM), the crystal structure of the magnetic nanoparticles obtained was verified by X-ray diffraction (DRX). The chemical composition of the nanoparticles powder was investigated using electron scanning microscope with energy dispersive X-ray spectroscopy (EDX) equipment. Optical properties as absorption was studied by UV-Vis spectroscopy.


Nukleonika ◽  
2017 ◽  
Vol 62 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Zbigniew Surowiec ◽  
Arkadiusz Miaskowski ◽  
Mieczysław Budzyński

Abstract The paper presents the investigation of magnetic nanoparticles (MNPs) dedicated to hyperthermia application. The crystal structure and size distributions have been determined by means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Magnetic properties of the nanoparticles were tested by Mössbauer spectroscopy together with calorimetric experiments. The Mössbauer spectroscopic study of MNPs revealed the existence of a superparamagnetic phase. The relative contribution of the relaxing component to the total spectrum at room temperature was about 10%. The heating effect of these MNPs under alternating magnetic field was examined. The temperature increase has reached 5°C in 10 min. The preliminary temperature rise suggests that the investigated materials are applicable for hyperthermia.


2008 ◽  
Vol 368-372 ◽  
pp. 781-783
Author(s):  
Zhen Feng Zhu ◽  
Jing Ping Li ◽  
Jun Yang

Pr-CeO2 nano-size powders with the average crystallites size of 12 nm and particle size of 18 nm were prepared by a co-precipitation-hydrothermal method using Ce(NO3)3·6H2O, Pr6O11 as raw materials and ammonia as the precipitation agent. The influence of hydrothermal treatment time, hydrothermal treatment temperature on the average crystallites size, color of powders and the solubility of praseodymium were investigated. The synthesized powders were characterized by X-ray diffraction, transmission electron microscopy and color measurements. Results showed that after calcining at 800°C for 4 hours, the color of the as-prepared powder changes from light red to red brown, the solubility of praseodymium and the crystallites size of the Pr-CeO2 powder both increase.


2013 ◽  
Vol 423-426 ◽  
pp. 151-154
Author(s):  
Xi Sheng He ◽  
Hui Qing Peng ◽  
Jin Li ◽  
Jun Dong

Fe3O4 magnetic nanoscale water-based magnetic fluid was fabricated by co-precipitation with citric acid (CA) and polyethylene amine (PEI) as dispersant. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to investigate the samples.The modified magenetic nanoparticles (MNPs) size of about 50nm and have a saturation magnetization about 0.25emu/g.These nanoparticles can be applied to the study of genophore.


2014 ◽  
Vol 896 ◽  
pp. 104-107 ◽  
Author(s):  
Poedji Loekitowati Hariani ◽  
Fahma Riyanti

CuFe2O4 nanoparticles were synthesized by co-precipitation method from the solution of CuCl2 and FeCl3 in alkaline condition. The prepared magnetic CuFe2O4 can be used to adsorb Cr (VI) ions from aqueous solution and separated from medium by magnetic technique. The characterization of CuFe2O4 with X-Ray diffraction (XRD) showed cubic units shells with diameter in the range 15-20 nm which obtained by Transmission Electron Microscope (TEM). The saturation of magnetization is around 13 emu g-1 measured with Vibrating Sample Magnetometer (VSM). Batch adsorption studies were carried out to optimize adsorption condition. Effective conditions for adsorption of Cr (VI) were found at the weight of CuFe2O4 was 1.0 g with contact time of 60 minutes and pH 3 with adsorption capacity 9.20 mg g-1.


2019 ◽  
Vol 13 (4) ◽  
pp. 61 ◽  
Author(s):  
Khulud Habanjar ◽  
F. El Haj Hassan ◽  
R. Awad

The aim of this work is to investigate the effect of BaFe12O19 nanoparticles on the microstructure, phase formation and mechanical properties of (Bi,Pb)-2223 superconducting phase. Co-precipitation and solid-state reaction techniques were used to synthesize BaFe12O19 nanoparticles and (BaFe12O19)x(Bi,Pb)-2223 superconducting samples with , respectively. BaFe12O19 nanoparticles and (BaFe12O19)x(Bi,Pb)-2223 structures were performed using X-ray diffraction. The morphology of BaFe12O19 nanoparticles and (BaFe12O19)x(Bi,Pb)-2223 were observed by means of transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The experimental results reveal the composition of Bi-2223 phase and traces of Bi-2212 as a secondary phase when compared to the undadded sample. Lattice parameters are not altered with BaFe12O19 addition which indicate that nanoparticles do not enter the host crystal of (Bi,Pb)-2223. Vickers microhardness Hv is measured as function of indentation load and time. It was found that microhardness has a non-linear trend with applied load and time. The experimental results were analyzed using different models. The analysis revealed that the HK model was more suitable than the other approaches in estimating the load independent hardness of the samples.


Sign in / Sign up

Export Citation Format

Share Document