scholarly journals Plasmon-enhanced Förster energy transfer in Langmuir-Blodgett films based on organic dyes

2019 ◽  
Vol 5 (1) ◽  
pp. 1-6
Author(s):  
Niyazbek Ibrayev ◽  
Evgeniya Seliverstova ◽  
Nazerke Zhumabay

AbstractThe effect of plasmon resonance of silver island films (SIF) on the interlayer Förster resonance energy transfer (FRET) between xanthene and oxazine dye molecules was studied. It has been shown that the enhancement of FRET can be controlled by changing in the distance between the donor-acceptor system and the SIF. The maximum increase in energy transfer efficiency (EET) by a factor of 2.6 was recorded at a distance of 6 nm from the SIF. The assumption was made that an increase in EET can be associated with both the direct appearance of a plasmon-enhanced rate constant of energy transfer and an increase in the quantum yield of the energy donor in direct contact with the SIF. The results can serve as a basis for studying of photoinduced processes in hybrid materials such as “organic dye-plasmon nanoparticles”, to increase the photosensitivity of solar cells in the visible region of the spectrum, and for the studying of photobiological processes, as well as to create materials with desired properties, sensors and light energy converters.

2003 ◽  
Vol 773 ◽  
Author(s):  
Aaron R. Clapp ◽  
Igor L. Medintz ◽  
J. Matthew Mauro ◽  
Hedi Mattoussi

AbstractLuminescent CdSe-ZnS core-shell quantum dot (QD) bioconjugates were used as energy donors in fluorescent resonance energy transfer (FRET) binding assays. The QDs were coated with saturating amounts of genetically engineered maltose binding protein (MBP) using a noncovalent immobilization process, and Cy3 organic dyes covalently attached at a specific sequence to MBP were used as energy acceptor molecules. Energy transfer efficiency was measured as a function of the MBP-Cy3/QD molar ratio for two different donor fluorescence emissions (different QD core sizes). Apparent donor-acceptor distances were determined from these FRET studies, and the measured distances are consistent with QD-protein conjugate dimensions previously determined from structural studies.


2021 ◽  
Vol 57 (26) ◽  
pp. 3275-3278
Author(s):  
Yanhui Cui ◽  
Fen Li ◽  
Xin Zhang

Two new dyes, consisting of an aromatic amine donor and dansyl acceptor connected by Diels–Alder bonds, display a switchable energy transfer. Dynamic covalent properties enable the mutual conversion of the two dyes by maleimide exchanges.


2017 ◽  
Vol 46 (35) ◽  
pp. 11656-11663 ◽  
Author(s):  
Li-Hui Cao ◽  
Hai-Yang Li ◽  
Hong Xu ◽  
Yong-Li Wei ◽  
Shuang-Quan Zang

The fluorescent porous MOFs can be host materials to explore vectorial Förster resonance energy transfer between MOFs and organic dyes.


2017 ◽  
Vol 1 (11) ◽  
pp. 2271-2282 ◽  
Author(s):  
Ilaria Meazzini ◽  
Camille Blayo ◽  
Jochen Arlt ◽  
Ana-Teresa Marques ◽  
Ullrich Scherf ◽  
...  

We test the potential of resonance energy transfer to enhance the performance of conjugated copolyelectrolyte donor–acceptor luminescent solar concentrators immobilised within a photoactive organic–inorganic ureasil waveguide.


2020 ◽  
Vol 24 (05n07) ◽  
pp. 985-992
Author(s):  
Tawseef Ahmad Dar ◽  
Amir Sohel Bulbul ◽  
Muniappan Sankar ◽  
Karl M. Kadish

Meso-tetrapyrenylporphyrin and its metal (Co[Formula: see text], Cu[Formula: see text], Ni[Formula: see text] and Zn[Formula: see text]) complexes were synthesized, characterized and studied for their spectral, electrochemical and energy transfer properties. DFT optimization was carried out to gain an insight into the interactions between the porphyrin [Formula: see text]-system and the pyrenyl substituents. The pyrenyl substituents and the porphyrin core remain essentially orthogonal to each other in both the free base and the metallated porphyrins. Redox potentials of the pyrenylporphyrins are marginally shifted as compared to their corresponding phenyl derivatives. Förster resonance energy transfer (FRET) studies were carried out in toluene for free-base pyrenylporphyrin and its Zn(II) complex. Since pyrene is a good donor, an efficient energy transfer from pyrene (D) to the porphyrin core (A) on the order of 80–85% was observed for these two compounds. It was observed that energy transfer occurs mainly via ”through-bond” (TB) interaction rather than ”through-space” (TS) interaction.


Sign in / Sign up

Export Citation Format

Share Document