Meso-Tetrapyrenylporphyrins: Synthesis, structural, spectral, electrochemical properties and Förster energy transfer (FRET) studies

2020 ◽  
Vol 24 (05n07) ◽  
pp. 985-992
Author(s):  
Tawseef Ahmad Dar ◽  
Amir Sohel Bulbul ◽  
Muniappan Sankar ◽  
Karl M. Kadish

Meso-tetrapyrenylporphyrin and its metal (Co[Formula: see text], Cu[Formula: see text], Ni[Formula: see text] and Zn[Formula: see text]) complexes were synthesized, characterized and studied for their spectral, electrochemical and energy transfer properties. DFT optimization was carried out to gain an insight into the interactions between the porphyrin [Formula: see text]-system and the pyrenyl substituents. The pyrenyl substituents and the porphyrin core remain essentially orthogonal to each other in both the free base and the metallated porphyrins. Redox potentials of the pyrenylporphyrins are marginally shifted as compared to their corresponding phenyl derivatives. Förster resonance energy transfer (FRET) studies were carried out in toluene for free-base pyrenylporphyrin and its Zn(II) complex. Since pyrene is a good donor, an efficient energy transfer from pyrene (D) to the porphyrin core (A) on the order of 80–85% was observed for these two compounds. It was observed that energy transfer occurs mainly via ”through-bond” (TB) interaction rather than ”through-space” (TS) interaction.

2008 ◽  
Vol 86 (9) ◽  
pp. 855-870 ◽  
Author(s):  
David L Andrews

Resonance energy transfer is the primary mechanism for the migration of electronic excitation in the condensed phase. Well-known in the particular context of molecular photochemistry, it is a phenomenon whose much wider prevalence in both natural and synthetic materials has only slowly been appreciated, and for which the fundamental theory and understanding have witnessed major advances in recent years. With the growing to maturity of a robust theoretical foundation, the latest developments have led to a more complete and thorough identification of key principles. The present review first describes the context and general features of energy transfer, then focusing on its electrodynamic, optical, and photophysical characteristics. The particular role the mechanism plays in photosynthetic materials and synthetic analogue polymers is then discussed, followed by a summary of its primarily biological structure determination applications. Lastly, several possible methods are described, by the means of which all-optical switching might be effected through the control and application of resonance energy transfer in suitably fabricated nanostructures.Key words: FRET, Förster energy transfer, photophysics, fluorescence, laser.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55568-55576 ◽  
Author(s):  
Yueshu Feng ◽  
Liwei Liu ◽  
Siyi Hu ◽  
Yingyi Liu ◽  
Yu Ren ◽  
...  

Recently, near-infrared (NIR) excitation has been suggested for PDT improvement and therapy of cancer.


2008 ◽  
Vol 12 (12) ◽  
pp. 1261-1269 ◽  
Author(s):  
Artem Y. Lebedev ◽  
Thomas Troxler ◽  
Sergei A. Vinogradov

Metalloporphyrin-based phosphorescent nanoprobes are being developed for two-photon microscopy of oxygen. In these molecular constructs, the generation of porphyrin triplet states following two-photon excitation is induced by the intramolecular Förster-type resonance energy transfer from a covalently attached 2P antenna. In the earlier developed prototypes, electron transfer between the antenna and the metalloporphyrin strongly interferred with the phosphorescence, reducing the sensitivity and the dynamic range of the sensors. By tuning the distances between the antenna and the core, and adjusting their redox potentials, the unwanted electron transfer could be prevented. An array of phosphorescent Pt porphyrins (energy transfer acceptors) and 2P dyes (energy transfer donors) was screened using dynamic quenching of phosphorescence, and the FRET-pair with the minimal ET rate was identified. This pair, consisting of Coumarin-343 and Pt meso-tetra-(4-alkoxyphenyl)porphyrin, was used to construct a probe in which the antenna fragments were linked to the termini of G3 poly(arylglycine) (AG) dendrimer with PtP core. The folded dendrimer formed an insulating layer between the porphyrin and the antenna, simultaneously controlling the rate of oxygen quenching (Stern-Volmer oxygen quenching constant). Modification of the dendrimer periphery with oligoethyleneglycol residues made the probe's signal insensitive to the presence of proteins and other macromolecular solutes.


2014 ◽  
Vol 18 (01n02) ◽  
pp. 94-106 ◽  
Author(s):  
Adam Langlois ◽  
Hai-Jun Xu ◽  
Bertrand Brizet ◽  
Franck Denat ◽  
Jean-Michel Barbe ◽  
...  

We report a truxene-based dyad built upon one donor (tri-meso-phenylzinc(II)porphyrin) and two acceptors (octa-β-alkylporphyrin free base) in which the donor exhibits free rotation around a Ctruxene-Cmeso single bond at 298 K in fluid solution but not at 77 K in a glass matrix, whereas the acceptors have very limited motion as they are blocked by β-methyl groups. This case is interesting because all the structural and spectroscopic parameters affecting the rate for singlet energy transfer according to a Förster Resonance Energy Transfer are only weakly temperature dependent, leaving only the Dexter mechanism explaining the larger variation in rate of energy transfers with the temperature hence providing a circumstantial evidence for a dual mechanism (Föster and Dexter) in truxene-based dyads (or polyads) in the S1 excited states.


RSC Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 3861-3871
Author(s):  
Pilar Perez-Tejeda ◽  
Alberto Martínez-Delgado ◽  
Elia Grueso ◽  
Rosa M. Giráldez-Pérez

Electrogenerated chemiluminescence efficiencies, redox potentials, photoluminescent (quenching and coupling) effects, and AFM images for the [Ru(bpy)3]2+/Au@tiopronin system were determined in aqueous solutions of the gold nanoparticles at pH 7.0.


Sign in / Sign up

Export Citation Format

Share Document