scholarly journals The Nitrogen Contained in Carbonized Poultry Litter is not Plant Available

2018 ◽  
Vol 3 (1) ◽  
pp. 284-290 ◽  
Author(s):  
Christoph Steiner ◽  
Keith Harris ◽  
Julia Gaskin ◽  
K.C. Das

Abstract Pyrolysis of biomass, reduces its volume, mass, odour, and potential pathogens, while concentrating nutrients in the resulting biochar. However, the plant availability of nutrients in particular of nitrogen remains largely unknown. Therefore, we investigated the nutrient availability of carbonized poultry litter. A nutrient poor soil was either fertilized with poultry litter or poultry litter carbonized at 500°C at the rates of 1.5, 3 and 6 t/ha. These organic amendments were compared with corresponding rates of mineral fertilizers (NH4NO3, KCl, CaHPO4, MgSO4) in a pot experiment. After four successive harvests of ryegrass (Lolium sp.) in a greenhouse we analyzed plant nutrient uptake and nutrient concentrations in the soil. While all treatments showed a linear increase in plant growth and nitrogen uptake, the plants fertilized with carbonized poultry litter did not show such a response. The carbonized poultry litter treatment produced more biomass than the unfertilized control, but the tissue concentration of nitrogen was below that of the control. Mehlich 1 extractable nutrients in the soil showed that there is more available phosphorus, potassium, calcium and magnesium in the soil fertilized with the carbonized poultry manure, but these available nutrients were not utilized due to the nitrogen limitation to plant growth. The results clearly show that nitrogen contained in carbonized poultry litter is not available for plants

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2409
Author(s):  
Hamed Alarefee ◽  
Che Fauziah Ishak ◽  
Daljit Singh Karam ◽  
Radziah Othman

Efficient use of co-composted organic manure with biochar is one of the sustainable management practices in an agriculture system to increase soil fertility and crop yield. The objectives of this research are to evaluate the use of co-composted biochar, biochar in formulation with poultry litter (PL), and PL compost on soil properties and maize growth. Organic amendments were applied at 10 Mg ha−1, and synthetic fertilizer was applied at the recommended rate of maize (N: P2O5: K2O at 60:60:40 kg ha−1). The results showed that addition of organic amendment significantly increased the total biomass parameter compared to the control, which ranged from 23.2% to 988.5%. The pure biochar treatment yielded lower biomass than the control by 27.1%, which was attributed to its low nutrient content. Consequently, the application of the co-composted biochar achieved higher plant height and aerial portion, which ranged from 46.86% to 25.74% and 7.8% to 108.2%, respectively, in comparison to the recommended fertilizer rate. In addition, the soil amended with co-composted biochar had a significant increase in soil organic matter and had significantly higher chlorophyll and nutrient concentrations in plants, which increased with an increase in the biochar ratio of the co-composts. This was probably attributed to the release of the nutrients retained during composting, thereby possibly making the co-composted biochar act as a slow-release fertilizer. In conclusion, the addition of organic manure with biochar enhanced the nutrient supply by gradual release in comparison to the mineral fertilizer.


2015 ◽  
Vol 48 (4) ◽  
pp. 13-20
Author(s):  
A. Ahmad ◽  
Z.I. Ahmed ◽  
M. Shehzad ◽  
I. Aziz ◽  
K.S. Khan ◽  
...  

Abstract Water scarcity and land degradation are emerging threats to global food production. The dry land regions of world are affected by climate change to a greater extent and facing food insecurity. The current pattern of food production has been estimated to be inadequate to meet demands of growing population and required around 38% increase to meet world`s food demands by 2025. Food insecurity in erosion hit dry land regions of Pakistan also demands development of resource-efficient cropping systems to meet the food needs of population growing. The research studies involved different cropping patterns such as fallow-wheat, mungbean-wheat, sorghum-wheat, fallow-lentil, mungbean-lentil, sorghum-lentil, fallow-barley, mungbean-barley and sorghum-barley. The organic amendments involved farmyard manure, NPK, poultry manure, compost and inoculation by phosphorus solubilizing microbes. The effect of cropping systems and soil amendments were evaluated at field scale in terms of water use efficiency measured in terms of economic terms. The results of the studies revealed that double cropping (mungbean-lentil and mungbean-barley) was feasible option in the dryland regions of Pakistan if integrated with the use of poultry manure as alternate environmental-friendly strategy to cut down the use of mineral fertilizers and eliminate summer fallowing.


Agro-Science ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 49-56
Author(s):  
A.O. Onunwa ◽  
C.J. Nwaiwu ◽  
J.E. Nwankwor ◽  
C.E. Emeh ◽  
C.O. Madueke ◽  
...  

Effects of four organic amendments on some soil physical and chemical properties were investigated in Awka, Anambra State in southeastern Nigeria. Over the years, use of synthetic materials in crop production has been a common practice globally. The attendant detrimental effects of the chemicals used in the formulation of these synthetics on animal and human health as well as the environment has made researchers to look out for a better agronomic practice that would not only improve productivity but at the same time sustain a healthy environment. Sole maize, sole cowpea and maize-cowpea intercrop (study area conventional practices) were planted using four soil organic amendments viz: cassava peel (CP), poultry manure (PM), pig waste (PW) and rice husk (RH) at the rate of 20 t ha–1 with the fifth as the control. The treatments were laid out in a 3 × 5 factorial in randomized complete block design and replicated four times. Data on the treatments’ effects on the selected soil physical properties (bulk density, total porosity, soil moisture) and chemical properties (soil pH, available phosphorus, cation exchange capacity (CEC), organic carbon, exchangeable bases and exchangeable acidity) were subjected to factorial analysis of variance using GenStat 2006 Edition. Results indicated that for sole maize, the amendments had significant effect onexchangeable Al3+and Na+; organic carbon, soil pH, available phosphorus and CEC but had no significant effect on Ca2+, H+, Mg2+ and K+ as compared to the control. For sole cowpea, compared to the plots with no amendment (control), all the chemical parameters analyzed differed significantly except organic carbon. Whereas, for maize-cowpea intercrop the treatments had no significant effect on Al3+, Na+, K+ and available phosphorus but differed significantly in exchangeable H+, Ca2+, Mg2+, organic carbon, soil pH, and CEC. There was a decrease in bulk density following the amendment. For sole maize, sole cowpea and maizecowpea intercrop; bulk density, total porosity and moisture content of the amended plots were significantly (p< 0.05) influenced. Organic amendments also significantly improved the growth and yield of maize and cowpea in both the sole and intercrop systems. Generally, poultry manure resulted in higher plant height,number of leaves and leaf area for maize; vine length, number of branches for cowpea as compared with other amendments. Hence, poultry manure was the most effective organic amendment in improving the soil physical and chemical properties as well as the growth and yield of cowpea and maize. Key words: Growth, maize-cowpea intercrop, soil physical and chemical properties, soil organic amendments


2021 ◽  
Vol 9 (8) ◽  
pp. 1561
Author(s):  
Taylor Readyhough ◽  
Deborah A. Neher ◽  
Tucker Andrews

Manure-derived organic amendments are a cost-effective tool that provide many potential benefits to plant and soil health including fertility, water retention, and disease suppression. A greenhouse experiment was conducted to evaluate how dairy manure compost (DMC), dairy manure compost-derived vermicompost (VC), and dehydrated poultry manure pellets (PP) impact the tripartite relationship among plant growth, soil physiochemical properties, and microbial community composition. Of tomato plants with manure-derived fertilizers amendments, only VC led to vigorous growth through the duration of the experiment, whereas DMC had mixed impacts on plant growth and PP was detrimental. Organic amendments increased soil porosity and soil water holding capacity, but delayed plant maturation and decreased plant biomass. Composition of bacterial communities were affected more by organic amendment than fungal communities in all microhabitats. Composition of communities outside roots (bulk soil, rhizosphere, rhizoplane) contrasted those within roots (endosphere). Distinct microbial communities were detected for each treatment, with an abundance of Massilia, Chryseolinea, Scedosporium, and Acinetobacter distinguishing the control, vermicompost, dairy manure compost, and dehydrated poultry manure pellet treatments, respectively. This study suggests that plant growth is affected by the application of organic amendments not only because of the soil microbial communities introduced, but also due to a synergistic effect on the physical soil environment. Furthermore, there is a strong interaction between root growth and the spatial heterogeneity of soil and root-associated microbial communities.


2019 ◽  
Vol 47 (4) ◽  
pp. 1331-1336
Author(s):  
Sultan DERE ◽  
Ayse COBAN ◽  
Yelderem AKHOUNDNEJAD ◽  
Suleyman OZSOY ◽  
Hayriye Yildiz DASGAN

Intensive use of mineral fertilizers in soilless growing systems can have adverse effects on the environment and human health and could be economically expensive. Aim of this study was whether it can be reduced mineral nutrients in soilless grown melon by using mycorrhizae inoculation. The experiment has been carried out in the early spring growing period in a greenhouse in the Mediterranean climate. The eight treatments have been applied:  (1) 100% Full nutrition (control), (2) 100% Full nutrition+mycorrhiza, (3) 80% nutrition, (4) 80% nutrition+mycorrhiza (5) 60% nutrition (6) 60% nutrition+mycorrhiza (7) 40% nutrition, (8) 40% nutrition+mycorrhiza. Effects of mycorrhiza on melon plant growth, yield, fruit quality, and leaf nutrient concentrations were investigated. Arbuscular mycorrhizal fungi colonization is accompanied by plant growth increases in reduced nutrient levels. The mycorrhiza inoculation had a significant enhancing effect on total yield in soilless grown melon plants. The highest increasing effect on melon yield was observed in the “80% nutrient+mycorrhiza”, and AM- inoculated plants produced 49.5% higher melon yield (12.4 kg m-2) than that of control plants without mycorrhizae (8.3 k gm-2). AM-inoculation was also able to establish an improvement in Brix and EC of melon fruit. In the nutrient contents of leaves, there were slight increases in AM-inoculated plants, except P. The P content was significantly increased in AM-inoculated 80% nutrient plants as comparison to that of its control.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


Author(s):  
Habtamu Mekonnen ◽  
Mulugeta Kibret

AbstractVegetable production is an important economic activity and a major source of vitamins, minerals, and income in Ethiopia. However, the production of vegetables is much less developed than the production of food grains in the country. Vegetable production still needs improvement in combating biotic and abiotic threats with innovative technologies. Nowadays, excess use of chemical fertilizers to satisfy the increasing demand for food exerts deadly effects on soil microorganisms and contribute to the deterioration of soil fertility and an increase in atmospheric pollution. Several types of research are still going on to understand the diversity and importance of plant growth promoting rhizobacteria (PGPR) and their role in the betterment of vegetable production. PGPR facilitate plant growth directly by either assisting in the acquisition of nutrients (nitrogen, phosphorus, and other essential nutrients) or regulation of the levels of hormones. Indirectly PGPR decrease the inhibitory effects of various pathogens on vegetable growth and development in the forms of biocontrol agents. Some of the notable PGPR capable of facilitating the growth of vegetables such as potato, tomato, pepper, onion belong to genera of Pseudomonas, Bacillus, Azotobacter, Enterobacter, and Azospirillum. Hence, to optimize vegetable production with reduced input of mineral fertilizers and pesticides, the use of PGPR in vegetable cultivation is recommended.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Angela Libutti ◽  
Anna Rita Rivelli

In recent years, soil addition with organic amendments, such as biochar and compost, has gained attention as an effective agronomic practice to sustain soil fertility, enhance plant growth and crop yield. Well known are the positive effects of compost on yield of a wide crop varieties, while both positive and negative responses are reported for biochar Therefore, the aim of the study was to verify the effect of biochar mixed with three types of compost on quanti-qualitative response of Swiss chard (Beta vulgaris L. cycla), a leafy green vegetable rich in dietary antioxidants, largely consumed worldwide. A factorial experiment in pots with two factors, including biochar (without biochar and with biochar from vine pruning residues) and compost (without compost, with compost from olive pomace, with vermicompost from cattle manure, and with compost from cattle anaerobic digestate), was setup. Two growth cycles were considered, and a set of quantitative (height of plants, number, area and fresh weight of leaves) and qualitative parameters (carotenoids, chlorophyll, total N, and NO3−content of leaves) were analyzed. Biochar decreased plant growth and NO3− leaf content; on the contrary, it increased total N leaf content, while compost improved all the considered parameters. The interactive effect of biochar and compost was evident only on total N and NO3− leaf content. In our experimental conditions, the compost showed to be the best option to improve Swiss chard growth and increase the content of phytopigments, while the biochar-compost mixtures did not produce the expected effect.


Sign in / Sign up

Export Citation Format

Share Document