Chemical composition of atmospheric particulate matter in the winter season as indicator of environment quality within urban areas

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna V. Talovskaya ◽  
Valeria D. Kirina ◽  
Victoria V. Litay ◽  
Tatyana S. Shakhova ◽  
Daria A. Volodina ◽  
...  

Abstract This paper shows the results of environment assessment within some cities of Western Siberia (Omsk, Tomsk, Kemerovo) impacted with different types of industries and fuel energy. This assessment is made on the basis of chemical composition study of particulate matter deposited in the snow cover. It is determined the marker elements (heavy metals, radioactive, rare and rare-earth elements) in the particulate phase of snow, which is reflected the specific emissions from different types of industries (oil-refinery, petrochemical plants, mechanical and instrument engineering factories, brickworks, thermal power plants) in the urban areas.

2019 ◽  
Vol 43 (1) ◽  
pp. 59-66
Author(s):  
Mohammad Lokman Hossain ◽  
Subrata Chandra Roy ◽  
Mithun Chandra Bepari ◽  
Bilkis Ara Begum

Air borne particulate matter PM10 and PM2.5 were collected by using Mini Vol portable Air Sampler from the world most densely populated city Dhaka and its suburban areas over a period of January through December in 2016. This study revealed a comparison of atmospheric particulate matter (PM) of a highly polluted urban area to its two neighboring areas that accommodate heavy oil based power plants. In all three sites the quantity of PM decreases in summer reaching its lowest level in the month of July, however, it increases significantly in winter season. Despite the presence of the fuel based power plants the average concentrations of PM10 and PM2.5 at the city Dhaka surpasses its two neighbors Manikganj and Nawabganj. Interestingly, PM2.5/PM10 ratio is higher at the suburban areas than urban area. The study shows that for all the sites PM2.5 is approximately twice than that of WHO and USEPA. However, the values of PM2.5 is almost similar for Nawabganj and Manikganj but much higher for the Dhaka city especially during dry season . The Mass concentration of Black Carbon (BC) was also determined from the PM samples from Manikganj and Nawabganj. Journal of Bangladesh Academy of Sciences, Vol. 43, No. 1, 59-66, 2019


2017 ◽  
Author(s):  
Chandra Venkataraman ◽  
Michael Brauer ◽  
Kushal Tibrewal ◽  
Pankaj Sadavarte ◽  
Qiao Ma ◽  
...  

Abstract. India currently experiences degraded air quality, with future economic development leading to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015–2050, under specific pathways of diffusion of cleaner and more energy efficiency technologies. The impacts of individual source-sectors on PM2.5 concentrations were assessed through GEOS-Chem model simulations of spatially and temporally resolved particulate matter concentrations, followed by population-weighted aggregation to national and state levels. PM2.5 pollution is a pan-India problem, with a regional character, not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 standard (40 µg/m3). Future evolution of emissions under current regulation or under promulgated or proposed regulation, yield deterioration in future air-quality in 2030 and 2050. Only under a scenario where more ambitious measures are introduced, promoting a total shift away from traditional biomass technologies and a very large shift (80–85 %) to non-fossil electricity generation was an overall reduction in PM2.5 concentrations below 2015 levels achieved. In this scenario, concentrations in 20 states and six union territories would fall below the national standard. However, even under this ambitious scenario, 10 states (including Delhi) would fail to comply with the national standard through to 2050. Under present day (2015) emissions, residential biomass fuel use for cooking and heating is the largest single sector influencing outdoor air pollution across most of India. Agricultural residue burning is the next most important source, especially in north-west and north India, while in eastern and peninsular India, coal burning in thermal power plants and industry are important contributors. The relative influence of anthropogenic dust and total dust is projected to increase in all future scenarios, largely from decreases in the influence of other PM2.5 sources. Overall, the findings suggest a large regional background of PM2.5 pollution (from residential biomass, agricultural residue burning and power plant and industrial coal), underlying that from local sources (transportation, brick kiln, distributed diesel) in highly polluted areas.


2018 ◽  
Vol 44 ◽  
pp. 00076 ◽  
Author(s):  
Alexei Trinchenko

One of the effective tools of solving engineering problems is the mathematical simulation of newly built and reconstructed industrial equipment. A necessity of solving identical problems fully belongs to ge-nerating equipment of thermal power plants too, which makes the use of methods of mathematic simulation quite a promising one in the course of designing power-generating units. The work presents the results of simula-tion and subsequent incorporation of the method of low-temperature vortex fossil solid-fuel combustion. Based on the developed algorithms and calcu-lation program the assessment of environmental indicators of reconstructed boiler equipment has been carried out and compliance with environmental standards with respect to the level of emissions of gaseous pollutants into environment confirmed. The incorporation of the method being considered into power-generating production has made it possible to reduce emissions of gaseous nitrogen oxides during combustion of coals of different types by 30%.


2020 ◽  
Vol 231 (10) ◽  
Author(s):  
Neele van Laaten ◽  
Dirk Merten ◽  
Wolf von Tümpling ◽  
Thorsten Schäfer ◽  
Michael Pirrung

Abstract Atmospheric particulate matter has become a major issue in urban areas from both a health and an environmental perspective. In this context, biomonitoring methods are a potential complement to classical monitoring methods like impactor samplers, being spatially limited due to higher costs. Monitoring using spider webs is compared with the more common moss bag technique in this study, focusing on mass fractions and ratios of elements and the applicability for source identification. Spider webs and moss bags with Hypnum cupressiforme were sampled at the same 15 locations with different types of traffic in the city of Jena, Germany. In the samples, mass fractions of 35 elements, mainly trace metals, were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) after aqua regia digestion. Significantly higher mass fractions in spider webs than in moss bags were found, even after a much shorter exposure period, and could not be ascribed completely to a diluting effect by the biological material in the samples. Different mechanisms of particle retention by the two materials are therefore assumed. More significant correlations between elements have been found for the spider web dataset. Those patterns allow for an identification of different sources of particulate matter (e.g. geogenic dust, brake wear), while correlations between elements in the moss bags show a rather general anthropogenic influence. Therefore, it is recommended to use spider webs for the short-term detection of local sources while moss bag biomonitoring is a good tool to show a broader, long-term anthropogenic influence.


2010 ◽  
Vol 13 (1-2) ◽  
pp. 89 ◽  
Author(s):  
L.M. Manоcha ◽  
K.A. Ram ◽  
S.M. Manocha

Fly-ashes are non-combustible mineral residues which are produced from coal in thermal power plants. Four different types of fly ashes were collected from different power station in Gujarat. Characterization through SEM shows that fly ash contains cenosphere i.e. gas bubble containing ceramic particle independent of their bulk density. Floatation technique was used for the separation of cenosphere from fly ash. Two solvents with extremely different densities were used for the separation of cenospheres. All methods gave approximately yield of less than 1 % cenosphere in fly ash. Color of cenospheres varied from gray to almost white and the value of density range from 0.4 – 0.8 g/cc. Further, chemical composition analysis revealed that cenospheres do not contain any high concentration of hazardous elements.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 583 ◽  
Author(s):  
Dusan Jandacka ◽  
Daniela Durcanska

Urban air quality is continuing to deteriorate. If we want to do something about this problem, we need to know the cause of the pollution. The big problem, not only in Europe, is the high concentrations of particulate matter (PM) in the urban environment. The origin of these particles can be different, including combustion, transport, industry, natural resources, etc. Particulate matter includes a large amount of the finest PM fractions, which can remain in the air for a long time, easily enter respiratory tracks, and damage human health. Particulate matter is also produced by the abrasion of different parts of roads and vehicle fleets and from resuspension road dust, which concerns matter with larger aerodynamic diameters. For this reason, we carried out a series of measurements at various measuring stations in Žilina, Slovakia, during different measuring seasons. The main objective was to find out the diversity of particulate matter sources in Žilina. The search for the particulate matter origin was carried out by particulate matter measurements, determination of the particulate matter fraction concentrations (PM10, PM2.5, and PM1), an investigation on the effect of secondary factors on the particulate matter concentrations, chemical analyses, and multivariate statistical analyses. Varied behavior of the particulate matter with respect to the measurement station and the measurement season was found. Differences in the concentrations of investigated chemical elements contained in the PM were found. Significant changes in the concentrations of particulate matter are caused not only by primary sources (e.g., road traffic in the city of Žilina), but mainly by the negative events (combination of air pollution sources and meteorological conditions). Maximum concentrations of particulate matter PM10 were measured during the winter season at the measuring station on Komenského Street: PM10 126.2 µg/m3, PM2.5 97.7 µg/m3, and PM1 90.4 µg/m3 were obtained using the gravimetric method. The coarse fraction PM2.5-10 was mainly represented by the chemical elements Mg, Al, Si, Ca, Cr, Fe, and Ba, and the fine fraction PM2.5 was represented by the chemical elements K, S, Cd, Pb, Ni, and Zn. Road transport as a dominant source of PM10 was identified from all measurements in the city of Žilina by using the multivariate statistical methods of principal component analysis (PCA) and factor analysis (FA).


2019 ◽  
pp. 0309524X1986842
Author(s):  
A Jeya Veronica ◽  
N Senthil Kumar

The electric power generation over the past decade has moved from conventional fossil fuel-fired thermal power plants to tiny-scale system generating power through distributed generation units. A group of such distributed generation units and loads are termed as microgrids. Microgrids can be located near the load centers to supply the load without any loss of power. Frequency regulation in a microgrid operating in autonomous mode is critical because of the intermittent nature of the renewable sources employed. To maintain the frequency regulation within a tolerance limit in a microgrid, proper control schemes have to be adopted in order to increase or decrease the real power generation. Hence, this article explores and presents a critical review of different types of control strategies employed for frequency regulation in microgrids.


Sign in / Sign up

Export Citation Format

Share Document