Stereology of Structures with Various Types of Spacing of Dispersed Spherical Particles Part 2: Estimation of Spatial Structure Parameters / Stereologische Untersuchung von Gefügen mit verschiedenen Typen der räumlichen Verteilung von dispergierten sphärischen Teilchen Teil 2: Berechnung der räumlichen Gefügeparameter

1989 ◽  
Vol 26 (1) ◽  
pp. 25-34
Author(s):  
Vratislav Horálek ◽  
Viktor Beneš ◽  
Vladimír Suchánek
Author(s):  
Xu Ding ◽  
Kai-Fan Ji ◽  
Xu-Zhi Li ◽  
Qi-Yuan Cheng ◽  
Jin-Liang Wang ◽  
...  

Abstract An open cluster is an ideal region to study the evolution of stars. In this work, we use Gaia Early Data Release 3 (Gaia EDR3) to derive the fundamental parameters of 30 faint open clusters listed in the catalogue given by Cantat-Gaudin et al. (2018, A&A, 618, A93), but the G magnitude of all of the member stars of that catalogue is brighter than ∼18 mag. This catalogue does not provide isochrone fitting parameters and spatial structure parameters. We acquired the member stars of 30 open clusters using the Density-Based Spatial Clustering of Applications with Noise algorithm in Gaia EDR3. The G magnitude of the member stars using our method can be found down to ∼21 mag. The G-band, GBP-band, and GRP-band data of the member stars construct a good color–magnitude diagram, which can further ensure the precision of isochrone fitting. We also calculated the spatial structure parameters, which are the core radius and the limiting radius, using Markov chain Monte Carlo algorithm.


2016 ◽  
Vol 25 (1) ◽  
pp. 056 ◽  
Author(s):  
Hongxinag Wang ◽  
Gongqiao Zhang ◽  
Gangying Hui ◽  
Yuanfa Li ◽  
Yanbo Hu ◽  
...  

Aim of the study: Neighborhood-based stand spatial structure parameters can quantify and characterize forest spatial structure effectively. How these neighborhood-based structure parameters are influenced by the selection of different numbers of nearest-neighbor trees is unclear, and there is some disagreement in the literature regarding the appropriate number of nearest-neighbor trees to sample around reference trees. Understanding how to efficiently characterize forest structure is critical for forest management.Area of study: Multi-species uneven-aged forests of Northern ChinaMaterial and methods: We simulated stands with different spatial structural characteristics and systematically compared their structure parameters when two to eight neighboring trees were selected.Main results: Results showed that values of uniform angle index calculated in the same stand were different with different sizes of structure unit. When tree species and sizes were completely randomly interspersed, different numbers of neighbors had little influence on mingling and dominance indices. Changes of mingling or dominance indices caused by different numbers of neighbors occurred when the tree species or size classes were not randomly interspersed and their changing characteristics can be detected according to the spatial arrangement patterns of tree species and sizes.Research highlights: The number of neighboring trees selected for analyzing stand spatial structure parameters should be fixed. We proposed that the four-tree structure unit is the best compromise between sampling accuracy and costs for practical forest management.


Web Ecology ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 45-54
Author(s):  
Xianfeng Fang ◽  
Wei Tan ◽  
Xiaoye Gao ◽  
Zongzheng Chai

Abstract. Close-to-nature management (CTNM) has been proposed as a promising forestry management approach to improve the structure and quality of forests, which integrates wood production and ecological service functions. Research on the effect of CTNM on the univariate and bivariate distribution of the spatial structure of forest stands provides a scientific basis for the evaluation of CTNM implemented in forestry. Here, we analyzed and compared the spatial-structure characteristics of Masson pine (Pinus massoniana) plantations (young, middle-age, and near-mature stages) under CTNM 8 years after selective cutting and unmanaged control. We used univariate and bivariate distribution of three spatial-structure parameters: mingling (M), dominance (U), and uniform-angle index (W). Results showed that the effect of CTNM on spatial structure was more remarkable in middle-aged and near-mature Masson pine forests compared with the young forest. CTNM significantly improved mingling degree and promoted the horizontal distribution, thereby changing from a cluster to a random distribution. Moreover, CTNM improved the proportion of trees with a high mixing degree and random distribution and the proportion of trees having a micro-structure of random distribution with a high degree of mixture and dominance with a high degree of mixture in middle-aged and near-mature Masson pine forest. Overall, the implementation of CTNM 8 years ago showed a positive effect on the improvement of the spatial structure of Masson pine forest, but the present spatial structure is suboptimal. Further implementation of CTNM to adjust the mingling and uniform-angle index is necessary, and CTNM according to this method of frequency distribution of stand structure parameters can improve the success of forest management.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Sign in / Sign up

Export Citation Format

Share Document