Thermal, mechanical and tribological properties of polyamide 6 matrix composites containing different carbon nanofillers

2015 ◽  
Vol 35 (4) ◽  
pp. 367-376 ◽  
Author(s):  
Nay Win Khun ◽  
Henry Kuo Feng Cheng ◽  
Lin Li ◽  
Erjia Liu

Abstract Polyamide 6 (PA6) matrix composites were prepared by incorporating multiwalled carbon nanotubes (MWCNTs) or by co-incorporating MWCNTs and carbon black (CB) of different contents. The thermal, mechanical and tribological properties of the composites were investigated using thermogravimetric analysis, nano-indentation, ball-on-disc micro-tribological test and micro-scratch test. It was found that a proper carbon filler content in the composites promoted the thermal stability of the composites, but an excessive loading of carbon fillers degraded the thermal stability of the composites. Although the hardness of the composites decreased with increased carbon filler content, the composites filled with mixed MWCNTs and CB had a higher load bearing capacity than the ones without CB. The tribological results indicated that the increased carbon filler content apparently lowered the friction coefficient of the composites due to the lubricating effect of the carbon fillers. It was also observed that the friction coefficients of the PA6-MWCNT-CB composites were consistently higher than those of the PA6-MWCNT composites due to the lower wear resistance of the PA6-MWCNT-CB composites. The scratch resistance of the composites decreased with increased carbon filler content due to the reduced cohesive strength of the composites.

2013 ◽  
Vol 33 (6) ◽  
pp. 535-543 ◽  
Author(s):  
Nay Win Khun ◽  
Erjia Liu

Abstract Polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) were blended by varying ABS content. The thermal, mechanical and tribological properties of the PC/ABS blends were systematically characterized. Increasing ABS content in the PC/ABS blends decreased thermal stability of the blends, as a result of the lower thermal stability of the ABS than that of the PC. Although the tensile strength of the PC/ABS blends apparently decreased with increased ABS content, the PC/ABS blend with 10 wt% of ABS had the highest tensile strength, because of improved processability of the blend. The friction and wear of the ABS measured against a steel ball of 6 mm in diameter were higher than those of the PC. As a result, a higher ABS content in the PC/ABS blends resulted in higher friction and wear of the blends. The scratch results showed that scratching with a 5 mm steel ball generated a scratch with a shorter length and lower depth on the PC than on the ABS, which indicated better scratch resistance of the PC. Therefore, the PC/ABS blend with 50 wt% of PC had better scratch resistance than the ABS, due to the influence of the PC embedded in the blend.


2010 ◽  
Vol 1 (1) ◽  
pp. 86-89
Author(s):  
Matyas Ando ◽  
Gabor Kalacska ◽  
T. Czigany

At this article we give a brief review about the additives effects for cast polyamide 6engineering plastics. The natural grade Magnesium catalyzed polyamide 6 has unique mechanicalproperties. Our target is to keep the mechanical and tribological properties with the development ofantistatic and ESD composite version. High conductive very effective to improve the electricalconductivity of magnezium catalized cast PA 6. Only few amount, 0,5% can result good antistaticproperty for the base matrix. Over 3% of additive the surface resistance of the material – performing107 Ω - can reach the ESD (Electrostatic Dissipative) category.


2021 ◽  
Vol 15 (2) ◽  
pp. 164-169
Author(s):  
Jian Gu ◽  
Sea-Hoon Lee ◽  
Daejong Kim ◽  
Hee-Soo Lee ◽  
Jun-Seop Kim

Improvement of the thermal stability of continuous SiC fiber reinforced SiC ceramic matrix composites (SiCf/SiC CMC) by the pre-treatment of SiC fillers and the suppression of oxidation during polymer impregnation and pyrolysis (PIP) process were investigated. Dense SiCf/SiC CMCs were fabricated using the slurry infiltration and PIP process under a purified argon atmosphere. Structure and mechanical properties of the SiCf/SiC CMC heated at different temperatures were evaluated. The flexural strength of the SiCf/SiC CMC decreased only 15.3%after heating at 1400 ?C, which exhibited a clear improvement compared with the literature data (49.5% loss), where severe thermal deterioration of SiCf/SiC composite occurred at high temperatures by the crystallization and decomposition of the precursor-derived ceramic matrix. The thermal stability of the SiCf/SiC CMC fabricated by PIP process was improved by the pre-treatment of SiC fillers for removing oxides and the strict atmosphere control to prevent oxidation.


1998 ◽  
pp. 236-251 ◽  
Author(s):  
A.I. Balabanovich ◽  
W. Schnabel ◽  
G.F. Levchik ◽  
S.V. Levchik ◽  
C.A. Wilkie

2008 ◽  
Vol 17 (1) ◽  
pp. 096369350801700 ◽  
Author(s):  
Zdeno Špitalský ◽  
Alexander Kromka ◽  
Libor Matějka ◽  
Peter Černoch ◽  
Jana Kovářová ◽  
...  

The epoxy nanocomposites filled with 0.1, 0.5, and 1 wt% nanodiamonds (nanoD) were prepared and their properties were compared with neat epoxy network or epoxy nanocomposite filled with 1 wt% multiwalled carbon nanotubes (MWCNTs). The obtained nanoD-epoxy composites increased significantly thermal stability of prepared nanocomposites in comparison with neat epoxy matrix. The exponential decay of light transmittance with increasing concentration of nanoD in sample was observed. The values of storage modulus G` and glass transition temperature Tg significantly decreased by addition of nanoD to epoxy network. This is caused by inhibition of cross-linking reaction of epoxy- and amino- groups by nanoD.


2011 ◽  
Vol 335-336 ◽  
pp. 153-156
Author(s):  
Xue Li Wu ◽  
Jian Hui Qiu ◽  
Lin Lei ◽  
Yang Zhao ◽  
Eiichi Sakai

To consider the effective utilization of plastics and agricultural wastes, rice straw fibre was extracted from agricultural wastes, and then composited with polylactic acid(PLA). The thermal stability of straw/poly(lactic acid)(straw/PLA) composites decreased (Thermogravimetric Analysis, TGA). Tensile strength, fracture strain and sharply impact strength of straw/PLA were decreased with the increase of filler content and grain size of straw. Yong’s modulus were increased as the increasing of straw content.


2018 ◽  
Vol 31 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Yingshuang Shang ◽  
Xian Wu ◽  
Yifan Liu ◽  
Zilong Jiang ◽  
Zhaoyang Wang ◽  
...  

The high strength of multiwalled carbon nanotubes (MWCNTs) indicates promising properties for industry applications to reduce frictional coefficient and improve mechanical properties, yet few researches have referred to its structural morphology on the thermal, mechanical, and tribological properties of composites. In this work, three different lengths of MWCNTs were used to prepare polyether ether ketone (PEEK) composites and investigate the effect of structural morphology of MWCNTs on the thermal, mechanical, and tribological properties of composites. Different lengths of MWCNTs endowed PEEK composites with different thermal, mechanical, and tribological properties. On thermal and mechanical properties, the incorporation of 10–30 μm length of MWCNTs increased more the effectiveness on the crystallization rate, showing a higher crystallization temperature and the best mechanical properties of the PEEK composites. On tribological properties, approximately 50 μm MWCNTs can effectively decrease adhesive wear, which is a benefit of forming a thin transfer film, thereby effectively decreasing the coefficient of friction and improving the wear resistance.


Sign in / Sign up

Export Citation Format

Share Document