The performance and morphology of PMMA/SAN/ABS blends

2016 ◽  
Vol 36 (3) ◽  
pp. 321-327 ◽  
Author(s):  
Dan Chen ◽  
Fupeng Zhu ◽  
Tingting Zhou ◽  
Mingyao Zhang ◽  
Huixuan Zhang

Abstract Acrylonitrile-butadiene-styrene (ABS) graft copolymers were synthesized via seeded emulsion polymerization techniques by grafting styrene (St) and acrylonitrile (AN) on polybutadiene (PB) particles. Poly (methyl methacrylate) (PMMA)/styrene-acrylonitrile (SAN)/ABS blends were prepared by melt blending ABS graft copolymers with PMMA and SAN resins. The properties, morphology and grafted chains behaviors of PMMA/SAN/ABS blends were investigated. The results showed that with the increase of the ratio of PMMA/SAN, the toughness of PMMA/SAN/ABS blends slightly decreased, the transmittance first increased and then decreased, and tensile strength was not dependent on the ratio of PMMA/SAN. The evolution of impact strength of the blends was similar with the tendency of grafted degree (GD) with the increase of cumene hydroperoxide (CHP) and tert-dodecyl mercaptan (TDDM). From transmission electron microscopy (TEM), it was found that ABS graft copolymers were uniformly dispersed in PMMA/SAN matrix.

e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Yan ◽  
Shuhao Qin ◽  
Jianbing Guo, ◽  
Min He ◽  
Minmin Zhang ◽  
...  

AbstractIn this article, polyamide 6(PA6)/organoclay masterbatch were prepared by melt mixing, and then acrylonitrile-butadiene-styrene(ABS)/polyamide 6(PA6)(70/30,w/w) nanocomposites were prepared by the melt mixing of PA6, ABS and organoclay. The effect of organoclay platelets on morphology and mechanical properties of ABS/PA6/organoclay ternary nanocomposites had been investigated by wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM), scanning electron microscopy (SEM) and mechanical properties testing. Morphology analysis revealed that organoclay platelets were selectively dispersed and exfoliated in PA6 phase, but some were located in interface of PA6 and ABS phase. The droplet size of PA6 dispersed phase were gradually reduced less than 4 phr organoclay, then the dispersed domain size became unchanged with the addition of various organoclay. It suggested the organoclay can compatibilize the ABS/PA6 blend nanocomposite. Moreover, the flexural strength and modulus increase with increasing organoclay content, but the tensile strength became maximal at 3 phr organoclay. The organoclay has no effect on impact strength of ABS/PA6 blend nanocomposite.


2018 ◽  
Vol 38 (4) ◽  
pp. 399-407 ◽  
Author(s):  
Yueshu Li ◽  
Aiqing Wang ◽  
Lingli Meng ◽  
Nannan Jiang

AbstractGraphene was prepared by the reduction of graphene oxide through chemical, thermal, and microwave methods. The morphology and structure of graphene obtained using different reduction processes have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra. Polycarbonate/acrylonitrile-butadiene-styrene copolymers were modified with the addition of the as-prepared graphene. Electrical resistivity and tensile strength as well as thermal stability of composites have been investigated. The results reveal that graphene from chemical reduction is well compatible with composites and suitable for the enhancement of thermal stability. Graphene prepared from thermal reduction and microwave reduction are applicable for mechanical reinforcement and antistatic fields, respectively.


2019 ◽  
Vol 947 ◽  
pp. 185-189
Author(s):  
Nor Hafizah Che Ismail ◽  
Hazizan Md. Akil ◽  
Zainathul Akhmar Salim Abdul Salim

The present study investigated the effects of untreated (UM) and treated (TM) muscovite fillers on the morphological and thermal properties of acrylonitrile-butadiene-styrene (ABS) composites. The TM produced from a two-stage ion-exchange process and ABS composites were compounded using melt blending. ABS/muscovite layered silicate composites were characterized using Field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM) while the thermal properties was investigated through Thermogravimetric (TGA) analysis. It was found that ABS/TM recorded higher thermal properties when compared to neat ABS and ABS/UM. The FESEM images showed better dispersion of ABS/TM compared to ABS/UM. Finally, mixed morphology of intercalated-exfoliated structure of composites was proven by TEM analysis.


2020 ◽  
Vol 69 (9) ◽  
pp. 794-803
Author(s):  
Tobias Abt ◽  
Mohammad Reza Kamrani ◽  
Jonathan Cailloux ◽  
Orlando Santana ◽  
Miguel Sánchez‐Soto

Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 25 ◽  
Author(s):  
Rudinei Fiorio ◽  
Dagmar D’hooge ◽  
Kim Ragaert ◽  
Ludwig Cardon

In the present work, statistical analysis (16 processing conditions and 2 virgin unmodified samples) is performed to study the influence of antioxidants (AOs) during acrylonitrile-butadiene-styrene terpolymer (ABS) melt-blending (220 °C) on the degradation of the polybutadiene (PB) rich phase, the oxidation onset temperature (OOT), the oxidation peak temperature (OP), and the yellowing index (YI). Predictive equations are constructed, with a focus on three commercial AOs (two primary: Irganox 1076 and 245; and one secondary: Irgafos 168) and two commercial ABS types (mass- and emulsion-polymerized). Fourier transform infrared spectroscopy (FTIR) results indicate that the nitrile absorption peak at 2237 cm−1 is recommended as reference peak to identify chemical changes in the PB content. The melt processing of unmodified ABSs promotes a reduction in OOT and OP, and promotes an increase in the YI. ABS obtained by mass polymerization shows a higher thermal-oxidative stability. The addition of a primary AO increases the thermal-oxidative stability, whereas the secondary AO only increases OP. The addition of the two primary AOs has a synergetic effect resulting in higher OOT and OP values. Statistical analysis shows that OP data are influenced by all three AO types, but 0.2 m% of Irganox 1076 displays high potential in an industrial context.


2014 ◽  
Vol 703 ◽  
pp. 45-50
Author(s):  
Chao Wang ◽  
Ying Chun Li ◽  
Guo Sheng Hu

The blends of Nylon 6/Acrylonitrile-Butadiene-Styrene (ABS) with styrene-maleic anhydride (SMA) was prepared by melt blending as the compatilizer. Mechanical properties, dynamic mechanical analysis (DMA) and fracture appearances were determined. It was found that the impact and tensile strength firstly increased and then decreased along with the increase of the SMA content. The properties reached maximum values when the content of SMA was 1.5%. The results of DMA and scanning electron microscope (SEM) indicated that the addition of SMA can effectively enhance the compatibility of Nylon 6 and ABS. Key words: Nylon 6, ABS, SMA, blends, modification


Sign in / Sign up

Export Citation Format

Share Document