Preparation of graphene and its application in polycarbonate/acrylonitrile-butadiene-styrene composites

2018 ◽  
Vol 38 (4) ◽  
pp. 399-407 ◽  
Author(s):  
Yueshu Li ◽  
Aiqing Wang ◽  
Lingli Meng ◽  
Nannan Jiang

AbstractGraphene was prepared by the reduction of graphene oxide through chemical, thermal, and microwave methods. The morphology and structure of graphene obtained using different reduction processes have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra. Polycarbonate/acrylonitrile-butadiene-styrene copolymers were modified with the addition of the as-prepared graphene. Electrical resistivity and tensile strength as well as thermal stability of composites have been investigated. The results reveal that graphene from chemical reduction is well compatible with composites and suitable for the enhancement of thermal stability. Graphene prepared from thermal reduction and microwave reduction are applicable for mechanical reinforcement and antistatic fields, respectively.

e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Yan ◽  
Shuhao Qin ◽  
Jianbing Guo, ◽  
Min He ◽  
Minmin Zhang ◽  
...  

AbstractIn this article, polyamide 6(PA6)/organoclay masterbatch were prepared by melt mixing, and then acrylonitrile-butadiene-styrene(ABS)/polyamide 6(PA6)(70/30,w/w) nanocomposites were prepared by the melt mixing of PA6, ABS and organoclay. The effect of organoclay platelets on morphology and mechanical properties of ABS/PA6/organoclay ternary nanocomposites had been investigated by wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM), scanning electron microscopy (SEM) and mechanical properties testing. Morphology analysis revealed that organoclay platelets were selectively dispersed and exfoliated in PA6 phase, but some were located in interface of PA6 and ABS phase. The droplet size of PA6 dispersed phase were gradually reduced less than 4 phr organoclay, then the dispersed domain size became unchanged with the addition of various organoclay. It suggested the organoclay can compatibilize the ABS/PA6 blend nanocomposite. Moreover, the flexural strength and modulus increase with increasing organoclay content, but the tensile strength became maximal at 3 phr organoclay. The organoclay has no effect on impact strength of ABS/PA6 blend nanocomposite.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mashael Alshabanat ◽  
Amal Al-Arrash ◽  
Waffa Mekhamer

Polymer nanocomposites of polystyrene matrix containing 10% wt of organo-montmorillonite (organo-MMT) were prepared using the solution method with sonication times of 0.5, 1, 1.5, and 2 hours. Cetyltrimethylammonium bromide (CTAB) is used to modify the montmorillonite clay after saturating its surface with Na+ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the montmorillonite before and after modification by CTAB. The prepared nanocomposites were characterized using the same analysis methods. These results confirm the intercalation of PS in the interlamellar spaces of organo-MMT with a very small quantity of exfoliation of the silicate layers within the PS matrix of all samples at all studied times of sonication. The thermal stability of the nanocomposites was measured using thermogravimetric analysis (TGA). The results show clear improvement, and the effects of sonication time are noted.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


2016 ◽  
Vol 36 (3) ◽  
pp. 321-327 ◽  
Author(s):  
Dan Chen ◽  
Fupeng Zhu ◽  
Tingting Zhou ◽  
Mingyao Zhang ◽  
Huixuan Zhang

Abstract Acrylonitrile-butadiene-styrene (ABS) graft copolymers were synthesized via seeded emulsion polymerization techniques by grafting styrene (St) and acrylonitrile (AN) on polybutadiene (PB) particles. Poly (methyl methacrylate) (PMMA)/styrene-acrylonitrile (SAN)/ABS blends were prepared by melt blending ABS graft copolymers with PMMA and SAN resins. The properties, morphology and grafted chains behaviors of PMMA/SAN/ABS blends were investigated. The results showed that with the increase of the ratio of PMMA/SAN, the toughness of PMMA/SAN/ABS blends slightly decreased, the transmittance first increased and then decreased, and tensile strength was not dependent on the ratio of PMMA/SAN. The evolution of impact strength of the blends was similar with the tendency of grafted degree (GD) with the increase of cumene hydroperoxide (CHP) and tert-dodecyl mercaptan (TDDM). From transmission electron microscopy (TEM), it was found that ABS graft copolymers were uniformly dispersed in PMMA/SAN matrix.


2013 ◽  
Vol 32 (4) ◽  
pp. 339-343 ◽  
Author(s):  
Siyamak Bagheriyan

AbstractSb2S3 nanoparticles were synthesized via a simple sonochemical reaction between SbCl3 and thioacetamide. The effect of different parameters such as power and time of pulsation on the morphology of the product has been investigated. The Sb2 S3 nanostructures were then added to acrylonitrile-butadiene-styrene terpolymer. The effect of Sb2 S3 nanostructures on the thermal stability of the polymeric matrix has been examined. The thermal decomposition of the nanocomposite shifts towards higher temperature in the presence of the Sb2 S3 . Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), photoluminescence (PL) spectroscopy, thermogravimetric analysis (TGA), UL-94 and limiting oxygen index (LOI) analysis.


2007 ◽  
Vol 22 (7) ◽  
pp. 1921-1926 ◽  
Author(s):  
Jifa Tian ◽  
Fei Liu ◽  
Chengmin Shen ◽  
Huairuo Zhang ◽  
Tianzhong Yang ◽  
...  

Large-area single-crystalline vanadium dioxide nanoflakes were first fabricated via a thermal reduction method in a tube furnace. The sample was characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results show that VO2 nanoflakes are single-crystalline with a monoclinic structure. The VO2 nanoflakes have a width of 200–300 nm, a thickness of 50–100 nm, and a length up to 1–2 μm. It is found that single-crystalline VO2 nanoflakes show a novel and complicated 5–7-step Li-storage behavior for an insertion amount of <0.6 mol lithium per mol of VO2.


2019 ◽  
Vol 19 (6) ◽  
pp. 3210-3217
Author(s):  
Jing Yang ◽  
Wang-Qing Fan ◽  
Ruihua Mu ◽  
Yamei Zhao

A novel Pd/SiO2 inorganic–organic composite material was developed for the selective separation of H2 from a mixture of H2 and CO2. Its thermal stability and microstructure calcined under N2 atmosphere were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 sorption–desorption measurements. Pd element in Pd/SiO2 gel material exists in PdCl2 form, calcination at 350 °C can result in the complete transformation of Pd2+ to metallic Pd0. With the increase of calcination temperature, the hydrophobic Si–CH3 bands decreased in intensity. The residue of Pd/SiO2 material calcined at 800 °C was mainly composed of Si–O–Si, metallic Pd0, CSi4 and some elemental C0. The mean pore size, BET specific surface area and total pore volume of the as-prepared Pd/SiO2 material calcined at 350 °C was about 2.26 nm, 417.35 m2 g−1 and 0.288 m3 g−1, respectively. The mean H2 and CO2 permeances of the corresponding Pd/SiO2 membrane were 9.90×10−6 and 9.10×10−7 mol m−2 Pa−1 s−1, respectively, when operating at 200 °C and a pressure difference of 0.3 MPa. After the steam exposure at 200 °C for 168 h, the H2 permeance decreased by 3.23% while the H2/CO2 permselectivity increased by 2.50%.


2010 ◽  
Vol 150-151 ◽  
pp. 386-390
Author(s):  
Yuan Xun Li ◽  
Ying Li Liu ◽  
Huai Wu Zhang ◽  
Wei Wei Ling

The rod-shaped polyaniline (PANI)-barium ferrite nanocomposites were synthesized by in situ polymerization of aniline in the presence of BaFe12O19 nanoparticles with diameters of 60-80 nm. The composites obtained were characterized by infrared spectra (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal stability and the composition of the composites were investigated by TG-DTG analysis. The results indicate that the thermal stability of the composites is higher than that of the pure PANI which can be attributed to the interactions existed between PANI chains and ferrite particles.


2007 ◽  
Vol 336-338 ◽  
pp. 2111-2114
Author(s):  
Tea Wan Kim ◽  
Dong Hyun Kim ◽  
Seong Soo Park ◽  
Kwang Ho Kim ◽  
Hong Chae Park ◽  
...  

Monodispersed and nano-sized Ni powders were synthesized from aqueous Ni sulfate hexahydrate (NiSO4· 6H2O) inside sucrose as a nonionic polymer network by using wet chemical reduction process. The influence of a nonionic polymer network on the particle size of the Ni powders were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). The Ni powders obtained by adding of sucrose were nearly spherical in shape and seemed to be nano-sized, typically in the range of 100 nm with not being agglomerated. As the sucrose content increased, the particle size of Ni powders steeply decreased and reached the minimum value, however, the particle size increased again with a further increase of sucrose content. This is believed to be due to the pore size of the swollen polymer network. As a result, the particle size of the Ni powders prepared by the reduction inside polymer network was strongly dependent of the sucrose content.


2017 ◽  
Vol 872 ◽  
pp. 149-154 ◽  
Author(s):  
Ying Chen ◽  
Wen Chao Peng

Large amounts of nitroaromatic compounds are discharged into the natural environment, leading to environmental pollution. The detection and removal of nitroaromatic compounds are therefore important environmental issues. In this study, the hybrid of molybdenum disulfide (MoS2) and graphene (GR) was synthesized using a facile hydrothermal method. Sodium molybdate was selected as the precursors for MoS2. While thiourea was used as reductant and sulfur sources at the same time. Samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), N2 adsorption, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Raman microscope. Compared to pure MoS2, the obtained MoS2/GR hybrid showed improved activity for electrochemical detection and chemical reduction of 4-nitrophenol. The activity enhancement should be due to the addition of GR, which could improve the conductivity as well as provide more active sites. The MoS2/GR hybrid could therefore provide new multi-function catalyst for environment protection.


Sign in / Sign up

Export Citation Format

Share Document