Flow Behavior of Composites of PA6/Kaolin Nanoparticles

2014 ◽  
Vol 703 ◽  
pp. 45-50
Author(s):  
Chao Wang ◽  
Ying Chun Li ◽  
Guo Sheng Hu

The blends of Nylon 6/Acrylonitrile-Butadiene-Styrene (ABS) with styrene-maleic anhydride (SMA) was prepared by melt blending as the compatilizer. Mechanical properties, dynamic mechanical analysis (DMA) and fracture appearances were determined. It was found that the impact and tensile strength firstly increased and then decreased along with the increase of the SMA content. The properties reached maximum values when the content of SMA was 1.5%. The results of DMA and scanning electron microscope (SEM) indicated that the addition of SMA can effectively enhance the compatibility of Nylon 6 and ABS. Key words: Nylon 6, ABS, SMA, blends, modification

2012 ◽  
Vol 501 ◽  
pp. 57-63
Author(s):  
Chao Wang ◽  
Ying Chun Li ◽  
Zhen Xing Yao

The alloy of Nylon6/Acrylonitrile-Butadiene-Styrene (ABS) with styrene-maleic anhydride (SMA) was prepared by melt blending as the compatilizer. Mechanical characteristics, dynamic mechanical analysis (DMA) and fracture appearances were determined. It was found that the impact and tensile strength firstly increased and then decreased along with the increase of the SMA content. The properties reached maximum values when the content of SMA was 2%. The results of DMA and scanning electron microscope (SEM) indicated that the addition of SMA can effectively enhance the compatibility of Nylon6 and ABS.


2021 ◽  
pp. 095400832110092
Author(s):  
Wei Fang ◽  
Xiaodong Fan ◽  
Ruilong Li ◽  
Lin Hu ◽  
Tao Zhou

Polyoxymethylene/thermoplastic polyamide elastomer (POM/TPAE) blends were prepared through melt extrusion in an attempt to improve the toughness and electrical properties of POM. The TPAE used in the study had the permanent antistatic effect, and its brand was MV2080. Acrylonitrile-butadiene-styrene copolymer grafted maleic anhydride (ABS-g-MAH) was added while preparing the POM/TPAE blends to improve the compatibility between TPAE and POM. The effects of TPAE and ABS-g-MAH on the morphologies, melting crystallization, dynamic mechanical analysis, surface resistivity and mechanical properties were examined in detail with various techniques. It was found that after adding 15 phr MV2080 as the modifier, the distribution of MV2080 in the blends was presented as many continuous long strips, which can be called “antistatic networks.” When using ABS-g-MAH as a compatibilizer, the surface resistivity of the samples 5#, 6#, and 7# which all containing 15 phr MV2080 with the best antistatic properties reached 107 Ω, and the impact strength of the above samples was all increased by more than 66%.


2011 ◽  
Vol 197-198 ◽  
pp. 1100-1103
Author(s):  
Jian Li

A polyurethane/clay (PU/clay) composite was synthesized. The microstructure of the composite was examined by scanning electron microscopy. The impact properties of the composite were characterized by impact testing. The study on the structure of the composite showed that clays could be dispersed in the polymer matrix well apart from a few of clusters. The results from mechanical analysis indicated that the impact properties of the composite were increased greatly in comparison with pure polyurethane. The investigation on the mechanical properties showed that the impact strength could be obviously increased by adding 20 wt% (by weight) clay to the matrix.


2020 ◽  
Vol 833 ◽  
pp. 8-12
Author(s):  
Salina Budin ◽  
Koay Mei Hyie ◽  
Hamid Yussof ◽  
Aulia Ishak ◽  
Rosnani Ginting

Acrylonitrile-butadiene-styrene (ABS) is one of the most widely used plastic. The application of ABS increases rapidly in industries recently. The drawback of the increasing demand of ABS is the increment of ABS waste. Huge increment in ABS waste has led to the increasing of environmental pollution. The demand in green technology and sustainability of resources has urged the need of recycling of ABS waste. However, the mechanical properties of the recycled ABS are deteriorated. Hence, this work aims to study the mechanical properties of blend virgin and recycled ABS. The first sample started with 100wt% of virgin ABS. While the second to eleventh samples was a mixing of virgin and recycled ABS at 10wt% incremental recycled ABS. The last sample was prepared using 100wt% of recycled ABS. The results show that the tensile strength of 100wt% of recycled ABS is slightly decreased as compared to 100wt% virgin ABS. Similar trend was observed on traverse rupture strength (TRS) when the TRS for 100wt% of recycled ABS is lower by 8% when compared to 100wt% of virgin ABS. The most significant change is observed on the impact strength. The impact strength for 100wt% of recycled ABS is substantially dropped by 86% as compared to 100wt% of virgin ABS.


2007 ◽  
Vol 15 (5) ◽  
pp. 365-370 ◽  
Author(s):  
L.M. Matuana ◽  
S. Cam ◽  
K.B. Yuhasz ◽  
Q.J. Armstrong

This study examined both the use of acrylonitrile-butadiene-styrene (ABS) as a plastic matrix for wood-plastic composites (WPCs) and the effect of impact modification on the mechanical properties of ABS/wood-flour composites. Blends of ABS filled with wood flour (both pine and maple) were processed into profile shape using a conical twin-screw extruder and the mechanical properties of the resulting composites were characterised and compared to WPCs made with polyolefins (HDPE and PP) and rigid PVC matrices. Generally, WPCs made with ABS matrix outperformed their polyolefin counterparts in both flexural strength and modulus, whereas ABS-based composites had inferior strength but greater modulus than those made with rigid PVC. The impact strength of ABS/wood-flour composites was below that of wood plastic composites made with polyolefins. However, impact modification with acrylonitrile-butadiene-styrene terpolymers had some effect in toughening of the ABS/wood-flour composites.


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


2011 ◽  
Vol 284-286 ◽  
pp. 1886-1889 ◽  
Author(s):  
Xiao Ming Sang ◽  
Lei Zhang ◽  
Run Zeng Wang ◽  
Xing Gang Chen ◽  
Man An ◽  
...  

The polystyrene/styrene-ethylene/butylene-styrene composites were prepared by melt blending process in this paper. The mechanical properties of PS/SEBS composites were analyzed. The results showed that the impact strength of PS/SEBS composites could be increased with the content increasing of SEBS, meanwhile the tensile strength was lower than pure polystyrene. When the content of SEBS increased to 13 wt.%, the impact strength of PS/SEBS composites was 2.4 times higher than that of pure PS. The fractured surfaces of the specimens were characterized by scanning electron microscopy(SEM). The results showed that the impact fractured surfaces produced a lot of sliding along with the addition of SEBS. The particles of SEBS could be well dispersed in polystyrene matrix. From rheological properties studies and the values of the torque, it was suggested that the maximum torque of PS/SEBS composites decreased drastically.


2011 ◽  
Vol 396-398 ◽  
pp. 1422-1425
Author(s):  
Xiao Ming Sang ◽  
Lei Zhang ◽  
Run Zeng Wang ◽  
Xing Gang Chen ◽  
Man An ◽  
...  

The styrene-ethylene/butylene-styrene/polystyrene (SEBS/PS) blends were prepared by melt blending. The mechanical properties of PS/SEBS blends were influenced by the increase of SEBS contents. When the content of SEBS increased to 13 wt%, the impact strength of SEBS/PS blends boosted the maximum value. Young’s modulus and tensile strength of SEBS/PS blends decreased with the increase of SEBS. The fracture surfaces obtained during Izod impact resistance tests were obtained by scanning electron microscopy (SEM). The results indicated that the number of particles of SEBS dispersed in PS matrix. The diameters of particles of SEBS were about 1.5-3 µm. SEBS/PS blends absorbed more energy than pure PS during impact resistance tests.


Sign in / Sign up

Export Citation Format

Share Document