scholarly journals On Power Stream in Motor or Drive System

2016 ◽  
Vol 23 (4) ◽  
pp. 93-98 ◽  
Author(s):  
Zygmunt Paszota

Abstract In a motor or a drive system the quantity of power increases in the direction opposite to the direction of power flow. Energy losses and energy efficiency of a motor or drive system must be presented as functions of physical quantities independent of losses. Such quantities are speed and load. But the picture of power stream in a motor or drive system is presented in the literature in the form of traditional Sankey diagram of power decrease in the direction of power flow. The paper refers to Matthew H. Sankey’s diagram in his paper „The Thermal Efficiency of Steam Engines“ of 1898. Presented is also a diagram of power increase in the direction opposite to the direction of power flow. The diagram, replacing the Sankey’s diagram, opens a new prospect for research into power of energy losses and efficiency of motors and drive systems.

2019 ◽  
Vol 49 (4) ◽  
pp. 203-219
Author(s):  
Grzegorz Skorek

Abstract The presented test results are an example of simulating determination of the hydrostatic field of the drive system and the energy efficiency of the system as a dependence on the speed and load coefficients of the hydraulic motor used in the system. The issues related to the determination of energy losses and energy efficiency of the hydraulic motor or drive system, which should be determined as dependent on the physical quantities independent of these losses, were also discussed. A Paszota diagram of the power increase in the direction opposite to the direction of the power flow, replacing the Sankey diagram of the power decrease in the direction of the power flow in the hydraulic motor or in the drive system was analyzed.


2013 ◽  
Vol 20 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Zygmunt Paszota

Abstract Losses and energy efficiency of every drive motor must be presented as functions of physical quantities independent of losses in the motor. Such quantities are speed and load required by the machine or device driven by the motor, changing in the drive operating field. Speed and load of the motor decide of the instantaneous useful power of the motor and also in a differentiated way of kinds and values of losses occurring in the motor. However, losses and energy efficiency of the hydrostatic drive motors and systems are evaluated by researchers and manufacturers as functions of parameters depending on the losses. The basic cause of such situation is the traditional, commonly accepted but erroneous, view of the power flow in the drive motors and systems represented by the Sankey diagram of power decrease in the direction of power flow. It is necessary to replace the Sankey diagram by the proposed diagram of increase of power in the motor and in the drive system in the direction opposite to the direction of power flow. The proposed view of losses and energy efficiency should be applied to all types of motor and drive systems. The aim of this paper is showing the resulting problems of the above postulates, exemplified by operation of a rotational displacement motor in a hydrostatic drive system. In order to make possible objective evaluation of the energy behaviour of different motor and system solutions and sizes, the losses and energy efficiency should be described and compared as dependent on the motor speed coefficient ωM and load coefficient M changing in the drive system operating field (0 ≤ ωM< ωMmax, 0 ≤ M< Mmax). The presented proposals open a new perspective of unavoidable research of drive motors and systems, making it possible to compare objectively the energy efficiency of different types of motors and drive systems.


2012 ◽  
Vol 19 (2) ◽  
pp. 3-10 ◽  
Author(s):  
Zygmunt Paszota

Effect of the working liquid compressibility on the picture of volumetric and mechanical losses in a high pressure displacement pump used in a hydrostatic drive Working liquid compressibility may considerably change the values and proportions of coefficients of volumetric and mechanical energy losses in the displacement pump used in a hydrostatic drive system. This effect can be particularly seen in the operation under high pressure and also in the system, where aeration of the working liquid can occur. In the Part I a diagram is presented, proposed by the author, of power increase in a hydrostatic drive system (hydraulic motor, pump) opposite to the direction of power flow, replacing the Sankey diagram of power decrease in the direction of power flow. Mathematical model is presented of volumetric losses in the pump and its laboratory verification.


2019 ◽  
Vol 26 (1) ◽  
pp. 159-166
Author(s):  
Grzegorz Skorek

Abstract In order to assess possibilities of energy saving during hydrostatic drive system operation, should be learned, and described losses occurring in system. Awareness of proportion of energy, volume, pressure, and mechanical losses in elements is essential for improving functionality and quality of hydrostatic drive systems characterized by unquestionable advantages. In systems with too low efficiency there is increase of load, mainly in case of pump load, which can lead to higher risk of failure, necessity of repair or replacement, as well as to shorten service life of system. Coefficients ki, given in subject literature by Paszota, describe relative value of individual losses in element. They make it possible to assess proportions of losses and assess value of energy efficiency (volumetric, pressure, mechanical) resulting from losses occurring at nominal pressure pn of system in which element is used. As a result, thanks to knowledge of coefficients ki of individual losses, it is possible to determine losses and energy efficiency of components operating in hydraulic system as well as efficiency of system with defined structure of motor speed control as function of speed and load coefficient of motor. Knowledge of coefficients of energy losses occurring in system elements (pump, hydraulic motor, conduits, and motor) allows building models of losses and energy efficiency of element working in system and energy efficiency of system as whole composed of elements. Mathematical models of losses and energy efficiency in system must take into account conditions resulting from applied structure of system, from level of nominal pressure, from rotational speed of motor driving pump shaft, from viscosity change of applied hydraulic oil. Article presents method of determining coefficients of axial piston pump used in typical hydrostatic drive system with proportional control. Values that can be assumed for these loss coefficients for other hydraulic pumps are also given.


2021 ◽  
Author(s):  
Benjamin Mwondwe Gituku ◽  
Kevin Khisa ◽  
Nathan Bogonko ◽  
Cicilia Mesa

Abstract The conversion of biomass to make charcoal fuel is an inefficient process that leads to immense energy losses along the value chain. We compared the energy efficiency and emissions of Gastov206, a natural draft TLUD gasifier cookstove using two sizes of wood pellets, as an alternative to two contemporary charcoal stoves in Kenya. A laboratory test showed that more energy in the fuel was lost by the charcoal cookstoves (69%) compared to the pellet gasifier cookstove (31%). The pellet gasifier cookstove had high thermal efficiency and cooking power (65–73%, 0.95–1.13 kW) compared to the charcoal cookstoves (27–35%, 0.68–0.89 kW). During the test, Gastov206 converted pellets-to-char at a ratio of 25% and a rate of 3 g/min. These findings indicate that when biomass is converted to pellets rather than charcoal, and cooking continues over the burning char generated by the gasifier cookstove, energy currently being wasted converting wood-to-charcoal can be avoided. Gastov206 using pellets showed lower CO emission (4.46–5.47 g/MJd and 0.27–0.39 g/min) compared to charcoal cookstoves (20.82–24.36 g/MJd and 0.89–1.35 g/min). PM2.5 emission by Gastov206 (52.35–61.50 mg/MJd and 3.21–4.37 mg/min) was not significant different compared to charcoal stoves (40.81–41.13 mg/MJd and 1.69–2.35 mg/min). Laboratory results show that natural-draft gasifier cookstoves using pellets can be studied further in kitchens as an alternative to charcoal cookstoves since they are potentially more energy-efficient.


2019 ◽  
Vol 26 (2) ◽  
pp. 129-135
Author(s):  
Grzegorz Skorek

Abstract The aim of the article is to look at the possibility of accurately determining the energy efficiency of drive systems thanks to the use of high quality sensors and measuring instruments. The types of measuring instruments used on the test stand are presented. The results of experimentally determined efficiencies and simulationally determined efficiencies of two hydrostatic systems with throttling control were compared, which are fed with a constant capacity pump. The choice of the analysed systems is not accidental. There is still a view in the literature about limited possibilities of energy systems with proportional control. The research stand was very carefully designed and made. The applied measuring instruments were characterized by high accuracy of measurements. The issues related to the determination of energy losses and energy efficiency of the engine or drive system, which should be determined as dependent on the physical quantities independent of these losses, were also discussed. For laboratory verification, measurement methods were developed, the test stand was adapted and automated. It consists of tested system and loaded system. The measurements during the tests were saved on the computer disk. In order to be able to compare the efficiency of the overall system with the efficiency obtained on the basis of the simulation, coefficients ki determining the energy losses of individual elements of the system were calculated. The research showed a large convergence of the mathematical description of energy losses in the elements of the system and the efficiency of the system with reality. The mathematical model enables accurate simulation determination of the energy efficiency of the system at each point of its field of operation, i.e. at each speed and load of the controlled hydraulic motor. The range of motor speed and load variation can also be accurately determined simulationally.


2021 ◽  
Vol 11 (10) ◽  
pp. 4418
Author(s):  
Alejandra Paz-Rodríguez ◽  
Juan Felipe Castro-Ordoñez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

This paper deals with the optimal siting and sizing problem of photovoltaic (PV) generators in electrical distribution networks considering daily load and generation profiles. It proposes the discrete-continuous version of the vortex search algorithm (DCVSA) to locate and size the PV sources where the discrete part of the codification defines the nodes. Renewable generators are installed in these nodes, and the continuous section determines their optimal sizes. In addition, through the successive approximation power flow method, the objective function of the optimization model is obtained. This objective function is related to the minimization of the daily energy losses. This method allows determining the power losses in each period for each renewable generation input provided by the DCVSA (i.e., location and sizing of the PV sources). Numerical validations in the IEEE 33- and IEEE 69-bus systems demonstrate that: (i) the proposed DCVSA finds the optimal global solution for both test feeders when the location and size of the PV generators are explored, considering the peak load scenario. (ii) In the case of the daily operative scenario, the total reduction of energy losses for both test feeders are 23.3643% and 24.3863%, respectively; and (iii) the DCVSA presents a better numerical performance regarding the objective function value when compared with the BONMIN solver in the GAMS software, which demonstrates the effectiveness and robustness of the proposed master-slave optimization algorithm.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3626 ◽  
Author(s):  
Wojciech Pietrowski ◽  
Konrad Górny

Despite the increasing popularity of permanent magnet synchronous machines, induction motors (IM) are still the most frequently used electrical machines in commercial applications. Ensuring a failure-free operation of IM motivates research aimed at the development of effective methods of monitoring and diagnostic of electrical machines. The presented paper deals with diagnostics of an IM with failure of an inter-turn short-circuit in a stator winding. As this type of failure commonly does not lead immediately to exclusion of a drive system, an early stage diagnosis of inter-turn short-circuit enables preventive maintenance and reduce the costs of a whole drive system failure. In the proposed approach, the early diagnostics of IM with the inter-turn short-circuit is based on the analysis of an electromagnetic torque waveform. The research is based on an elaborated numerical field–circuit model of IM. In the presented model, the inter-turn short-circuit in the selected winding has been accounted for. As the short-circuit between the turns can occur in different locations in coils of winding, computations were carried out for various quantity of shorted turns in the winding. The performed analysis of impact of inter-turn short-circuit on torque waveforms allowed to find the correlation between the quantity of shorted turns and torque ripple level. This correlation can be used as input into the first layer of an artificial neural network in early and noninvasive diagnostics of drive systems.


Author(s):  
Yifan Jia ◽  
Zhonghua Huang ◽  
Liang Chu ◽  
Xiaoxiang Na ◽  
Nan Xu ◽  
...  

An open-end winding permanent magnet synchronous motor (OW-PMSM) fed by dual inverter is a competitive option for the drive system of dual power electric vehicles. It allows manageable power flow between two isolated power sources through the motor without requiring a DC/DC converter. Based on the mathematical model of the OW-PMSM and the principles of power sharing, this paper first compares the power sharing capacity among some existing torque regulation algorithms, including unit power factor (UPF) control, maximum torque per ampere (MTPA) control, and constant back electromotive force (CBE) control. Then a control algorithm named minimum voltage vector amplitude (MVVA) is presented, which features covering the maximum motor operating range and the maximum power sharing range under the linear voltage vector distribution. Simulation results confirm the validity of the proposed MVVA control, and demonstrate its advantages in vehicular applications.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5727
Author(s):  
Michał Michna ◽  
Filip Kutt ◽  
Łukasz Sienkiewicz ◽  
Roland Ryndzionek ◽  
Grzegorz Kostro ◽  
...  

In this paper, the static and dynamic simulations, and mechanical-level Hardware-In-the-Loop (MHIL) laboratory testing methodology of prototype drive systems with energy-saving permanent-magnet electric motors, intended for use in modern construction cranes is proposed and described. This research was aimed at designing and constructing a new type of tower crane by Krupiński Cranes Company. The described research stage was necessary for validation of the selection of the drive system elements and confirmation of its compliance with applicable standards. The mechanical construction of the crane was not completed and unavailable at the time of testing. A verification of drive system parameters had to be performed in MHIL laboratory testing, in which it would be possible to simulate torque acting on the motor shaft. It was shown that the HIL simulation for a crane may be accurate and an effective approach in the development phase. The experimental tests of selected operating cycles of prototype crane drives were carried out. Experimental research was performed in the LINTE^2 laboratory of the Gdańsk University of Technology (Poland), where the MHIL simulator was developed. The most important component of the system was the dynamometer and its control system. Specialized software to control the dynamometer and to emulate the load subjected to the crane was developed. A series of tests related to electric motor environmental parameters was carried out.


Sign in / Sign up

Export Citation Format

Share Document