Fulgide dyes

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrew Towns

Abstract This article outlines the general structures and photochromism characteristic of fulgide dyes and their most important related analogues. It provides an overview of synthetic routes to such derivatives in addition to exemplifying how typical structural variations influence photochromic behavior. A brief survey then follows, giving a flavor of the applications that have been – and continue to be – sought for them in the capacity of functional dyes.

Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo

Mitochondrial alterations were studied in 25 liver biopsies from patients with alcoholic liver disease. Of special interest were the morphologic resemblance of certain fine structural variations in mitochondria and crystalloid inclusions. Four types of alterations within mitochondria were found that seemed to relate to cytoplasmic crystalloids.Type 1 alteration consisted of localized groups of cristae, usually oriented in the long direction of the organelle (Fig. 1A). In this plane they appeared serrated at the periphery with blind endings in the matrix. Other sections revealed a system of equally-spaced diagonal lines lengthwise in the mitochondrion with cristae protruding from both ends (Fig. 1B). Profiles of this inclusion were not unlike tangential cuts of a crystalloid structure frequently seen in enlarged mitochondria described below.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Meng-Yin Li ◽  
Jie Yang ◽  
Ya-Qian Wang ◽  
Xue-Yuan Wu ◽  
...  

DNA lesion such as metholcytosine(<sup>m</sup>C), 8-OXO-guanine(<sup>O</sup>G), inosine(I) <i>etc</i> could cause the genetic diseases. Identification of the varieties of lesion bases are usually beyond the capability of conventional DNA sequencing which is mainly designed to discriminate four bases only. Therefore, lesion detection remain challenge due to the massive varieties and less distinguishable readouts for minor structural variations. Moreover, standard amplification and labelling hardly works in DNA lesions detection. Herein, we designed a single molecule interface from the mutant K238Q Aerolysin, whose confined sensing region shows the high compatible to capture and then directly convert each base lesion into distinguishable current readouts. Compared with previous single molecule sensing interface, the resolution of the K238Q Aerolysin nanopore is enhanced by 2-order. The novel K238Q could direct discriminate at least 3 types (<sup>m</sup>C, <sup>O</sup>G, I) lesions without lableing and quantify modification sites under mixed hetero-composition condition of oligonucleotide. Such nanopore could be further applied to diagnose genetic diseases at high sensitivity.


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2018 ◽  
Author(s):  
Tanner C. Jankins ◽  
Robert R. Fayzullin ◽  
Eugene Khaskin

We report a one-step, Ru(II)-catalyzed cyclopropanation reaction that is conceptually different from the previously reported protocols that include Corey-Chaykovsky, Simmons-Smith, and metal catalyzed carbene attack on olefins. Under the current protocol, various alcohols are transformed into sulfone substituted cyclopropanes with excellent isolated yields and diastereoselectivities. This new reaction forms highly congested cyclopropane products with three new C–C bonds, three or two new chiral centers and one new quaternary carbon center. 22 examples of isolated substrates are given. Previously reported synthetic routes for similar substrates are all multi-step, linear routes that proceed with overall low yields and poor control of stereochemistry. Experimental mechanistic investigations suggest initial metal-catalyzed dehydrogenation of the alcohol substrate and catalyst independent stepwise attack of two equivalents of sulfone on the aldehyde under basic conditions. While the Ru(II) is only responsible for the initial dehydrogenation step, the rate of aldehyde formation is crucial to maintaining the right balance of intermediates needed to afford the cyclopropane product.


2020 ◽  
Vol 27 ◽  
Author(s):  
Alessia Catalano ◽  
Carlo Franchini ◽  
Alessia Carocci

: Mexiletine is an antiarrhythmic drug belonging to IB class, acting as sodium channel blocker. Besides its well-known activity on arrhythmias, its usefulness in the treatment of myotonia, myotonic distrophy and amyotrophic lateral sclerosis is now widely recognized. Nevertheless, it has been retired from the market in several countries because of its undesired effects. Thus, several papers were reported in the last years about analogues and homologues of mexiletine being endowed with a wider therapeutic ratio and a more selectivity of action. Some of them showed sodium channel blocking activity higher than the parent compound. It is noteworthy that mexiletine is used in therapy as a racemate even though a difference in the activities of the two enantiomers were widely demonstrated, with (–)-(R)-enantiomer being more active: this finding led several research groups to study mexiletine and its analogues and homologues in their optically active forms. This review summarizes the different synthetic routes used to obtain these compounds. They could represent an interesting starting point to new mexiletine-like compounds without common side effects related to the use of mexiletine.


2020 ◽  
Vol 23 (26) ◽  
pp. 2960-2968
Author(s):  
Renáta Kertiné Ferenczi ◽  
Tünde-Zita Illyés ◽  
Sándor Balázs Király ◽  
Gyula Hoffka ◽  
László Szilágyi ◽  
...  

The reported enantioselective synthesis for the preparation of (+)-(2R,3R)-2-(4- hydroxy-3-methoxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-carbaldehyde, precursor for the stereoselective synthesis of bioactive flavanolignans, could not be reproduced. Thus, the target molecule was prepared via the synthesis and separation of diastereomeric O-glucosides. TDDFT-ECD calculations and the 1,4-benzodioxane helicity rule were utilized to determine the absolute configuration. ECD calculations also confirmed that the 1Lb Cotton effect is governed by the helicity of the heteroring, while the higher-energy ECD transitions reflect mainly the orientation of the equatorial C-2 aryl group.


2020 ◽  
Vol 24 (24) ◽  
pp. 2823-2844
Author(s):  
Aditya Bhattacharyya

: Multiheteroatom-containing small-sized cyclic molecules such as 2- iminothiazolidines are often found to possess beneficial pharmacological properties. In this review article, the biological significance of 2-iminothiazolidines is discussed and the literature reports published in the last 15 years spanning from 2006 to 2020 describing various preparative routes to access 2-iminothiazolidine derivatives have been categorically and chronologically described. The notable synthetic methods discussed here involve ringexpansion transformations of nonactivated and activated aziridines, thiiranes, epoxides, and other miscellaneous reactions.


2020 ◽  
Vol 24 (21) ◽  
pp. 2475-2497
Author(s):  
Andrea Verónica Rodríguez-Mayor ◽  
German Jesid Peralta-Camacho ◽  
Karen Johanna Cárdenas-Martínez ◽  
Javier Eduardo García-Castañeda

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.


Sign in / Sign up

Export Citation Format

Share Document