scholarly journals Study of the redistribution of U, Zr, Nb, Tc, Mo, Ru, Fe, Cr, and Ni between oxide and metallic phases in the matrix of a multiphase Chernobyl hot-particle extracted from a soil sample of the Western Plume

2018 ◽  
Vol 106 (12) ◽  
pp. 985-990 ◽  
Author(s):  
Philipp Pöml ◽  
Boris Burakov

Abstract A “hot particle” found 6 km west of the Chernobyl nuclear power plant 4 years after the Chernobyl severe nuclear accident was analysed by scanning electron microscopy and electron probe micro-analysis. The matrix of the particle consists of relics of partly molten UO2 nuclear fuel and two different phases of solidified U–Zr–O melt (U0.77Zr0.23O2 and U0.67Zr0.33O2). The particle also contains a unique metallic inclusion of a size of 30×22 μm. The inclusion is non-homogeneous and in some parts shows a dendrite-like structure. It consists of about 38 wt.% Fe, about 10 wt.% U, Mo, and Nb, about 5 wt.% Ru, Zr, Ni, and Cr, and small amounts of Tc (2 wt.%) and Si (0.4 wt.%). The presence of partly molten nuclear fuel suggests a local temperature exceeding 2850 °C. The metallic inclusion most likely formed when steel, fuel, and cladding reacted together and molten steel incorporated U, Zr, Nb, Tc, Mo, and Ru from molten fuel and cladding during a very fast high-temperature process. Fast quenching of the metallic and the oxide melt left no time for Tc and Mo to evaporate. Molten Zr was partly oxidised and acted as a buffer for O which caused the reduction of a fraction of the U. The data of this study support the previously reported supercritical nature of the Chernobyl explosion.

2021 ◽  
Vol 15 ◽  
pp. 121-126
Author(s):  
Mohammad Ali Shafii ◽  
Dian Fitriyani ◽  
Seni H J Tongkukut ◽  
Zaki Su’ud

One of the methods that widely used in solving neutron transport equations in the nuclear fuel cell is the collision probability (CP) method. The neutron transport is very important to solve because the neutron distribution is related to the reactor power distribution. The important thing in the CP method is the CP matrix calculation, better known as has an important role in determining the neutron flux distribution in the reactor core. This study uses a linear flat flux model in each cell region for each energy group with white boundary condition. Although the type of reactor used in this study is a fast reactor, the matrix calculation still carried out in fast and thermal group energy. The matrix depends on the number of mesh in each cell region. The matrix formed from the mesh distribution will produce a matrix for each energy group. Because the boundary condition of the system is assumed that there are no contributions neutron source from the outside, the sum of the matrix must be less than one. In general, the results of the calculations in this study are following the theory


2018 ◽  
Vol 4 (2) ◽  
pp. 119-125
Author(s):  
Vadim Naumov ◽  
Sergey Gusak ◽  
Andrey Naumov

The purpose of the present study is the investigation of mass composition of long-lived radionuclides accumulated in the fuel cycle of small nuclear power plants (SNPP) as well as long-lived radioactivity of spent fuel of such reactors. Analysis was performed of the published data on the projects of SNPP with pressurized water-cooled reactors (LWR) and reactors cooled with Pb-Bi eutectics (SVBR). Information was obtained on the parameters of fuel cycle, design and materials of reactor cores, thermodynamic characteristics of coolants of the primary cooling circuit for reactor facilities of different types. Mathematical models of fuel cycles of the cores of reactors of ABV, KLT-40S, RITM-200M, UNITERM, SVBR-10 and SVBR-100 types were developed. The KRATER software was applied for mathematical modeling of the fuel cycles where spatial-energy distribution of neutron flux density is determined within multi-group diffusion approximation and heterogeneity of reactor cores is taken into account using albedo method within the reactor cell model. Calculation studies of kinetics of burnup of isotopes in the initial fuel load (235U, 238U) and accumulation of long-lived fission products (85Kr, 90Sr, 137Cs, 151Sm) and actinoids (238,239,240,241,242Pu, 236U, 237Np, 241Am, 244Cm) in the cores of the examined SNPP reactor facilities were performed. The obtained information allowed estimating radiation characteristics of irradiated nuclear fuel and implementing comparison of long-lived radioactivity of spent reactor fuel of the SNPPs under study and of their prototypes (nuclear propulsion reactors). The comparison performed allowed formulating the conclusion on the possibility in principle (from the viewpoint of radiation safety) of application of SNF handling technology used in prototype reactors in the transportation and technological process layouts of handling SNF of SNPP reactors.


MRS Advances ◽  
2016 ◽  
Vol 1 (62) ◽  
pp. 4163-4168
Author(s):  
E. González-Robles ◽  
M. Herm ◽  
V. Montoya ◽  
N. Müller ◽  
B. Kienzler ◽  
...  

ABSTRACTThe long-term behavior of the UO2 fuel matrix under conditions of the Belgian “Supercontainer design” was investigated by dissolution tests of high burn-up spent nuclear fuel (SNF) in high alkaline solution under 40 bar of (Ar + 8%H2) atmosphere. Four fragments of SNF, obtained from a pellet previously leached during two years, were exposed to young cement water with Ca (YCWCa) under 3.2 bar H2 partial pressure in four single/independent autoclave experiments for a period of 59, 182, 252 and 341 days, respectively. After a decrease of the concentration of dissolved 238U, which is associated with a reduction of U(VI) to U(IV), the concentration of 238U in solution is constant in the experiments running for 252 and 341 days. These observations indicate an inhibition of the matrix dissolution due to the presence of H2. A slight increase in the concentration of 90Sr and 137Cs in the aqueous solution indicates that there is still dissolution of the grain boundaries. These findings are similar to those reported for spent nuclear fuel corrosion in synthetic near neutral pH solutions.


2019 ◽  
Vol 14 ◽  
pp. 03017
Author(s):  
Mathieu Sailly ◽  
Isabelle Le-Couteulx ◽  
Laetitia Rollin ◽  
Jean-François Gehanno ◽  
Ismérie Bocquet

Author(s):  
Krista Nicholson ◽  
John McDonald ◽  
Shona Draper ◽  
Brian M. Ikeda ◽  
Igor Pioro

Currently in Canada, spent fuel produced from Nuclear Power Plants (NPPs) is in the interim storage all across the country. It is Canada’s long-term strategy to have a national geologic repository for the disposal of spent nuclear fuel for CANada Deuterium Uranium (CANDU) reactors. The initial problem is to identify a means to centralize Canada’s spent nuclear fuel. The objective of this paper is to present a solution for the transportation issues that surround centralizing the waste. This paper reviews three major components of managing and the transporting of high-level nuclear waste: 1) site selection, 2) containment and 3) the proposed transportation method. The site has been selected based upon several factors including proximity to railways and highways. These factors play an important role in the site-selection process since the location must be accessible and ideally to be far from communities. For the containment of the spent fuel during transportation, a copper-shell container with a steel structural infrastructure was selected based on good thermal, structural, and corrosion resistance properties has been designed. Rail has been selected as the method of transporting the container due to both the potential to accommodate several containers at once and the extensive railway system in Canada.


Author(s):  
Marco Ciotti ◽  
Jorge L. Manzano ◽  
Vladimir Kuznetsov ◽  
Galina Fesenko ◽  
Luisa Ferroni ◽  
...  

Financial aspects, environmental concerns and non-favorable public opinion are strongly conditioning the deployment of new Nuclear Energy Systems across Europe. Nevertheless, new possibilities are emerging to render competitive electricity from Nuclear Power Plants (NPPs) owing to two factors: the first one, which is the fast growth of High Voltage lines interconnecting the European countries’ national electrical grids, this process being triggered by huge increase of the installed intermittent renewable electricity sources (Wind and PV); and the second one, determined by the carbon-free constraints imposed on the base load electricity generation. The countries that due to public opinion pressure can’t build new NPPs on their territory may find it profitable to produce base load nuclear electricity abroad, even at long distances, in order to comply with the European dispositions on the limitation of the CO2 emissions. In this study the benefits from operating at multinational level with the deployment of a fleet of PWRs and subsequently, at a proper time, the one of Lead Fast Reactors (LFRs) are analyzed. The analysis performed involves Italy (a country with a current moratorium on nuclear power on spite that its biggest utility operates NPPs abroad), and the countries from South East and Central East Europe potentially looking for introduction or expansion of their nuclear power programmes. According to the predicted evolution of their Gross Domestic Product (GDP) a forecast of the electricity consumption evolution for the present century is derived with the assumption that a certain fraction of it will be covered by nuclear electricity. In this context, evaluated are material balances for the front and the back end of nuclear fuel cycle associated with the installed nuclear capacity. A key element of the analysis is the particular type of LFR assumed in the scenario, characterized by having a fuel cycle where only fission products and the reprocessing losses are sent for disposition and natural or depleted uranium is added to fuel in each reprocessing cycle. Such LFR could be referred to as “adiabatic reactor”. Owing to introduction of such reactors a substantive reduction in uranium consumption and final disposal requirements can be achieved. Finally, the impacts of the LFR and the economy of scale in nuclear fuel cycle on the Levelized Cost of Electricity (LCOE) are being evaluated, for scaling up from a national to a multinational dimension, illustrating the benefits potentially achievable through cooperation among countries.


Sign in / Sign up

Export Citation Format

Share Document