scholarly journals Building Performance Evaluation – A Design Approach for Refurbishment of a Small Traditional Building in Scotland

2019 ◽  
Vol 23 (2) ◽  
pp. 53-66
Author(s):  
Janice A. Foster ◽  
Anna Poston ◽  
Samuel A. Foster

Abstract In recent years, thermal performance improvements have been applied to an increasing number of historic buildings towards the achievement of the legally binding Scottish carbon dioxide (CO2) emission reductions. Over 20 % of the built environment in Scotland was constructed pre 1919 and the targeting of fabric improvements in these buildings can pose a performance risk if inappropriate measures are applied. This paper discusses through a case study a Building Performance Evaluation (BPE) approach used in conjunction with the design process for refurbishment of a community owned historic building, located in Arisaig, Scotland. The community received funding to improve the energy performance of this nineteenth century stone building and committed to a 75 % reduction in CO2 emissions. BPE was conducted in 2014 as part of the design process and repeated post-refurbishment in 2015 to validate the design. The initial BPE identified high heat losses, inefficient heating and lighting systems that resulted in occupant discomfort, high running costs and consequently the loss of a community facility during the winter months. The resulting BPE quantified improvements to the building fabric, occupant comfort and reduced energy consumption, which advocated this design approach as a beneficial tool for informing historic building refurbishment.

Author(s):  
Sandy Stannard ◽  

It is clear that building energy performance plays an essential role in architecture and in architectural practice, not only for reasons of occupant comfort and energy efficiency but also for minimal code compliance. While achieving energy compliance is essential and even laudable, our current definition of “building performance” is somewhat limited. Energy performance analyses are often performed solely for code compliance with a minimal feedback loop during the design process. In the instances when analyses are completed as part of design, a growing array of simulation tools allow designers to make more informed decisions during the design process. There is tremendous potential in this trajectory.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Nishesh Jain ◽  
Esfand Burman ◽  
Samuel Stamp ◽  
Clive Shrubsole ◽  
Roderic Bunn ◽  
...  

Hospitals are controlled yet complex ecosystems which provide a therapeutic environment that promotes healing, wellbeing and work efficiency for patients and staff. As these buildings accommodate the sick and vulnerable, occupant wellbeing and good indoor environmental quality (IEQ) that deals with indoor air quality (IAQ), thermal comfort, lighting and acoustics are important objectives. As the specialist nature of hospital function demands highly controlled indoor environments, this makes them energy intensive buildings due to the complex and varying specifications for their functions and operations. This paper reports on a holistic building performance evaluation covering aspects of indoor air quality, thermal comfort, lighting, acoustics, and energy use. It assesses the performance issues and inter-relationships between IEQ and energy in a new building on a hospital campus in the city of Bristol, United Kingdom. The empirical evidence collated from this case study and the feedback received from the hospital staff help identify the endemic issues and constraints related to hospital buildings, such as the need for robust ventilation strategies in hospitals in urban areas that mitigate the effect of indoor and outdoor air pollution and ensuring the use of planned new low-carbon technologies. Whilst the existing guidelines for building design provide useful instructions for the protection of hospital buildings against ingress of particulate matter from outdoors, more advanced filtration strategies may be required to enact chemical reactions required to control the concentration levels of pollutants such as nitrogen dioxide and benzene. Further lessons for improved performance in operation and maintenance of hospitals are highlighted. These include ensuring that the increasingly available metering and monitoring data in new buildings, through building management systems, is used for efficient and optimal building operations for better IEQ and energy management. Overall, the study highlights the need for an integrated and holistic approach to building performance to ensure that healthy environments are provided while energy efficiency targets are met.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Gianluca Serale ◽  
Luca Gnoli ◽  
Emanuele Giraudo ◽  
Enrico Fabrizio

Artificial lighting systems are used in commercial greenhouses to ensure year-round yields. Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless, having artificial lighting systems extended for hectares with power densities over 50W/m2 causes energy and power demand of greenhouses to be really significant. The present paper introduces an innovative supervisory and predictive control strategy to optimize the energy performance of the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of 1 hectare with a lighting system with a nominal power density of 50 Wm−2 requiring an overall power supply of 1 MW for a period of 80 days. The results have been compared with the data coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable. Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy flexibility for grid reliability.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 509
Author(s):  
Lodovica Valetti ◽  
Francesca Floris ◽  
Anna Pellegrino

The technological innovation in the field of lighting and the need to reduce energy consumption connected to public lighting are leading many municipalities to undertake the renewal of public lighting systems, by replacing the existing luminaires with LED technologies. This renovation process is usually aimed at increasing energy efficiency and reducing maintenance costs, whist improving the lighting performance. To achieve these results, the new luminaires are often characterised by a luminous flux distribution much more downward oriented, which may remarkably influence and alter the perception of the night image of the sites. In this study the implications of the renovation of public lighting systems in terms of lighting and energy performance as well as the effects relating to the alteration of the night image, in historical contexts characterized by significant landscape value, are analysed. Results, along with demonstrating the positive effect that more sustainable and energy efficient lighting systems may have on the lighting performance and energy consumptions of public lighting systems, evidences the impact they may have on the alteration of the nocturnal image.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 59
Author(s):  
Abraham Yezioro ◽  
Isaac Guedi Capeluto

Improving the energy efficiency of existing and new buildings is an important step towards achieving more sustainable environments. There are various methods for grading buildings that are required according to regulations in different places for green building certification. However, in new buildings, these rating systems are usually implemented at late design stages due to their complexity and lack of integration in the architectural design process, thus limiting the available options for improving their performance. In this paper, the model ENERGYui used for design and rating buildings in Israel is presented. One of its main advantages is that it can be used at any design stage, including the early ones. It requires information that is available at each stage only, as the additional necessary information is supplemented by the model. In this way, architects can design buildings in a way where they are aware of each design decision and its impact on their energy performance, while testing different design directions. ENERGYui rates the energy performance of each basic unit, as well as the entire building. The use of the model is demonstrated in two different scenarios: an office building in which basic architectural features such as form and orientation are tested from the very beginning, and a residential building in which the intervention focuses on its envelope, highlighting the possibilities of improving their design during the whole design process.


Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.


Sign in / Sign up

Export Citation Format

Share Document