scholarly journals Accuracy Investigation of Creating Orthophotomaps Based on Images Obtained by Applying Trimble-UX5 UAV

2017 ◽  
Vol 103 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Volodymyr Hlotov ◽  
Alla Hunina ◽  
Zbigniew Siejka

Abstract The main purpose of this work is to confirm the possibility of making largescale orthophotomaps applying unmanned aerial vehicle (UAV) Trimble- UX5. A planned altitude reference of the studying territory was carried out before to the aerial surveying. The studying territory has been marked with distinctive checkpoints in the form of triangles (0.5 × 0.5 × 0.2 m). The checkpoints used to precise the accuracy of orthophotomap have been marked with similar triangles. To determine marked reference point coordinates and check-points method of GNSS in real-time kinematics (RTK) measuring has been applied. Projecting of aerial surveying has been done with the help of installed Trimble Access Aerial Imaging, having been used to run out the UX5. Aerial survey out of the Trimble UX5 UAV has been done with the help of the digital camera SONY NEX-5R from 200m and 300 m altitude. These aerial surveying data have been calculated applying special photogrammetric software Pix 4D. The orthophotomap of the surveying objects has been made with its help. To determine the precise accuracy of the got results of aerial surveying the checkpoint coordinates according to the orthophotomap have been set. The average square error has been calculated according to the set coordinates applying GNSS measurements. A-priori accuracy estimation of spatial coordinates of the studying territory using the aerial surveying data have been calculated: mx=0.11 m, my=0.15 m, mz=0.23 m in the village of Remeniv and mx=0.26 m, my=0.38 m, mz=0.43 m in the town of Vynnyky. The accuracy of determining checkpoint coordinates has been investigated using images obtained out of UAV and the average square error of the reference points. Based on comparative analysis of the got results of the accuracy estimation of the made orthophotomap it can be concluded that the value the average square error does not exceed a-priori accuracy estimation. The possibility of applying Trimble UX5 UAV for making large-scale orthophotomaps has been investigated. The aerial surveying output data using UAV can be applied for monitoring potentially dangerous for people objects, the state border controlling, checking out the plots of settlements. Thus, it is important to control the accuracy the got results. Having based on the done analysis and experimental researches it can be concluded that applying UAV gives the possibility to find data more efficiently in comparison with the land surveying methods. As the result, the Trimble UX5 UAV gives the possibility to survey built-up territories with the required accuracy for making orthophotomaps with the following scales 1: 2000, 1: 1000, 1: 500.

2021 ◽  
Vol 47 (2) ◽  
pp. 96-103
Author(s):  
Volodymyr Hlotov ◽  
Alla Hunina ◽  
Ihor Kolb ◽  
Vadim Kolesnichenko ◽  
Ihor Trevoho

The work aims to analyze and study the possibilities of using “Cetus” unmanned aerial vehicle (UAV) for performing topographic aerial surveys. The authors developed and tested aircraft-type UAV for topographic aerial photography. The studies were conducted on a specialized landfill, at which there is an appropriate number of situational points whose coordinates are determined with high accuracy. These points were used as both reference and control points. The obtained UAV aerial survey materials were subjected to a phototriangulation process to determine the orientation elements and to analyze, first and foremost, the angular orientation elements. The surveying was carried out on a mountainous territory, where the spatial coordinates of 37 situational points were determined by the method of ground-based GPS survey with an average accuracy of up to 0.05 m. These points were used as reference and control points. Aerial photography was performed in such a way that the scale of the images was as uniform as possible. The design solutions implemented in the Cetus UAV provide all the possibilities to perform aerial surveys of territories in strict compliance with the projected flight parameters. UAV equipment provides the necessary real-time correction of the position of the aerial camera. At the same time the optimum straightness of routes, stability of scales and mutual overlapping of pictures is reached. Regarding the accuracy of obtaining the spatial coordinates of the points of terrain objects, using “Cetus” UAV surveys, plans can even be made on a scale of even 1: 1000. As a result of the creation of the UAV “Cetus”, it became possible to perform the topographic aerial survey of the territories and to create large-scale orthophotos that fully meet the instructions. As a result of testing the “Cetus” UAV, it can be used in production processes when drawing up topographic plans for a large-scale series: 1: 1000 – 1: 5000, which will significantly save the cost of performing topographic work.


2020 ◽  
Vol 92,2020 (92) ◽  
pp. 45-54
Author(s):  
V. Hlotov ◽  
◽  
М. Fys ◽  
О. Pashchetnyk ◽  
◽  
...  

Purpose. Develop an optimal algorithm that will increase the accuracy of determining the coordinates of the terrain when using the aerial process applying an unmanned aerial vehicle (UAV). Method. The minimization of function based on the condition of collinearity is performed, which clarifies the elements of external orientation (EZO) of digital images and leads to an increase in the accuracy of the spatial coordinates of the points of objects. The proposed function is the sum of the squares of the differences between the calculated and measured reference points on the corresponding digital images. The sequence of implementation of the proposed algorithm is that taking into account the condition of the minimum of this function makes it possible to obtain a system of six nonlinear equations for EZO. The process of determining EZO is performed in two ways: in the first case, the function G is minimized directly by one of the numerical methods, and in the second - obtained as a solution of a system of equations, which gives refined EZO values based on initial approximations obtained directly from UAV telemetry. Modified conditions of the minimum of the function G in which there are no differentiation operations are used to control the accuracy of EZO determination. As a result, we obtain the final values of the EZO at the time of shooting. Results. An algorithm has been developed and tested on mock-ups on real examples, which allows to increase the accuracy of calculating the coordinates of terrain points when using UAVs for the aerial photography process. Scientific novelty. Formulas are obtained, which increase the accuracy of creating topographic materials by digital stereophotogrammetric method. Practical significance. The implementation of the developed algorithm will significantly increase the accuracy of processing large-scale orthophotos and topographic plans created on the basis of aerial photography from UAVs.


Author(s):  
Lu Chen ◽  
Handing Wang ◽  
Wenping Ma

AbstractReal-world optimization applications in complex systems always contain multiple factors to be optimized, which can be formulated as multi-objective optimization problems. These problems have been solved by many evolutionary algorithms like MOEA/D, NSGA-III, and KnEA. However, when the numbers of decision variables and objectives increase, the computation costs of those mentioned algorithms will be unaffordable. To reduce such high computation cost on large-scale many-objective optimization problems, we proposed a two-stage framework. The first stage of the proposed algorithm combines with a multi-tasking optimization strategy and a bi-directional search strategy, where the original problem is reformulated as a multi-tasking optimization problem in the decision space to enhance the convergence. To improve the diversity, in the second stage, the proposed algorithm applies multi-tasking optimization to a number of sub-problems based on reference points in the objective space. In this paper, to show the effectiveness of the proposed algorithm, we test the algorithm on the DTLZ and LSMOP problems and compare it with existing algorithms, and it outperforms other compared algorithms in most cases and shows disadvantage on both convergence and diversity.


Author(s):  
Ting-Hsuan Wang ◽  
Cheng-Ching Huang ◽  
Jui-Hung Hung

Abstract Motivation Cross-sample comparisons or large-scale meta-analyses based on the next generation sequencing (NGS) involve replicable and universal data preprocessing, including removing adapter fragments in contaminated reads (i.e. adapter trimming). While modern adapter trimmers require users to provide candidate adapter sequences for each sample, which are sometimes unavailable or falsely documented in the repositories (such as GEO or SRA), large-scale meta-analyses are therefore jeopardized by suboptimal adapter trimming. Results Here we introduce a set of fast and accurate adapter detection and trimming algorithms that entail no a priori adapter sequences. These algorithms were implemented in modern C++ with SIMD and multithreading to accelerate its speed. Our experiments and benchmarks show that the implementation (i.e. EARRINGS), without being given any hint of adapter sequences, can reach comparable accuracy and higher throughput than that of existing adapter trimmers. EARRINGS is particularly useful in meta-analyses of a large batch of datasets and can be incorporated in any sequence analysis pipelines in all scales. Availability and implementation EARRINGS is open-source software and is available at https://github.com/jhhung/EARRINGS. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Zhao Sun ◽  
Yifu Wang ◽  
Lei Pan ◽  
Yunhong Xie ◽  
Bo Zhang ◽  
...  

AbstractPine wilt disease (PWD) is currently one of the main causes of large-scale forest destruction. To control the spread of PWD, it is essential to detect affected pine trees quickly. This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD. We used an unmanned aerial vehicle (UAV) platform equipped with an RGB digital camera to obtain high spatial resolution images, and multi-scale segmentation was applied to delineate the tree crown, coupling the use of object-oriented classification to classify trees discolored by PWD. Then, the optimal segmentation scale was implemented using the estimation of scale parameter (ESP2) plug-in. The feature space of the segmentation results was optimized, and appropriate features were selected for classification. The results showed that the optimal scale, shape, and compactness values of the tree crown segmentation algorithm were 56, 0.5, and 0.8, respectively. The producer’s accuracy (PA), user’s accuracy (UA), and F1 score were 0.722, 0.605, and 0.658, respectively. There were no significant classification errors in the final classification results, and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation. The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing. This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.


Author(s):  
M. A. Altyntsev ◽  
S. A. Arbuzov ◽  
R. A. Popov ◽  
G. V. Tsoi ◽  
M. O. Gromov

A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.


2021 ◽  
Author(s):  
Florence Matutini ◽  
Jacques Baudry ◽  
Marie-Josée Fortin ◽  
Guillaume Pain ◽  
Joséphine Pithon

Abstract Context – Species distribution modelling is a common tool in conservation biology but two main criticisms remain: (1) the use of simplistic variables that do not account for species movements and/or connectivity and (2) poor consideration of multi-scale processes driving species distributions. Objectives – We aimed to determine if including multi-scale and fine-scale movement processes in SDM predictors would improve accuracy of SDM for low-mobility amphibian species over species-level analysis.Methods – We tested and compared different SDMs for nine amphibian species with four different sets of predictors: (1) simple distance-based predictors; (2) single-scale compositional predictors; (3) multi-scale compositional predictors with a priori selection of scale based on knowledge of species mobility and scale-of-effect (4) multi-scale compositional predictors calculated using a friction-based functional grain to account for resource accessibility with landscape resistance to movement.Results - Using friction-based functional grain predictors produced slight to moderate improvements of SDM performance at large scale. The multi-scale approach, with a priori scale selection led to ambiguous results depending on the species studied, in particular for generalist species.Conclusion - We underline the potential of using a friction-based functional grain to improve SDM predictions for species-level analysis.


Author(s):  
Rodion V. Savinov ◽  

The Article is devoted to the Representative of the Early Neo-Scholasticism, Span­ish Thinker Jaume Balmes. The Focus of Attention is the Interpretation of the Kan­tian Doctrine of Knowledge, which Balmes proposed in the Fourth Book of his “Filosofia Fundamental”(1846). It is shown that contrary to the generally negative attitude towards Kant and the Philosophy of Criticism that prevailed by the 1830s in Catholic Intellectual Culture, Balmes not only seriously studies and evaluates the Results of Kantian Criticism, but also he finds many points of contact between Criticism and Scholasticism, for which he undertakes a large-scale rewriting of the Kantian Theory of Knowledge in Terms of Scholasticism. At the same time, he of­fers Criticism of Kantian philosophy based on the Resources of the Scholastic Tra­dition, which allows integrating the Transcendental Analysis of Cognition devel­oped by Kant into the Methods of Scholastic Philosophy. Balmes sought to restore the Possibility of Metaphysical Knowledge, as a Result of which he excluded a number of Important Points of the Kantian Concept, he changed idea of a priori, setting the Boundaries of Sensuality and Reason, to a moving and dynamic “Agent Intellect” (entendimento agente), and Balmes replaced a transcendental subject by a “Universal Reason” (razón universal). In Conclusion, it is shown that Balmes’ Interpretation had a profound Influence on the Development of Understanding of Kantian Philosophy in Neo-Scholasticism and Neo-Thomism.


Author(s):  
Zahid Raza ◽  
Deo P. Vidyarthi

Computational Grid attributed with distributed load sharing has evolved as a platform to large scale problem solving. Grid is a collection of heterogeneous resources, offering services of varying natures, in which jobs are submitted to any of the participating nodes. Scheduling these jobs in such a complex and dynamic environment has many challenges. Reliability analysis of the grid gains paramount importance because grid involves a large number of resources which may fail anytime, making it unreliable. These failures result in wastage of both computational power and money on the scarce grid resources. It is normally desired that the job should be scheduled in an environment that ensures maximum reliability to the job execution. This work presents a reliability based scheduling model for the jobs on the computational grid. The model considers the failure rate of both the software and hardware grid constituents like application demanding execution, nodes executing the job, and the network links supporting data exchange between the nodes. Job allocation using the proposed scheme becomes trusted as it schedules the job based on a priori reliability computation.


Sign in / Sign up

Export Citation Format

Share Document