Forced vibration of delaminated Timoshenko beams subjected to a moving load

2012 ◽  
Vol 19 (2) ◽  
pp. 145-157 ◽  
Author(s):  
Mohammad H. Kargarnovin ◽  
Mohammad T. Ahmadian ◽  
Ramazan Ali Jafari-Talookolaeia

AbstractA composite beam with single delamination under the action of moving load has been modeled accounting for the Poisson’s effect, shear deformation, and rotary inertia. The existence of the delamination changes the stiffness of the structure, and this affects the dynamic response of the structure. We have used a constrained mode to simulate the behavior between the delaminated surfaces. Based on this mode, eigensolution technique is used to obtain the natural frequencies and their corresponding mode shapes for the delaminated beam. Then, the Ritz method is adopted to derive the dynamic response of the beam subjected to a moving load. The obtained results for the free and forced vibrations of beams are verified against reported similar results in the literature. Moreover, the maximum dynamic response of such beam is compared with an intact beam. The effects of different parameters such as the size, depth, and spanwise location of the delamination, the load velocity, the different ply configurations, and the Poisson’s effect on the dynamic response of the beam are studied.

2021 ◽  
Vol 4 (2) ◽  
pp. 99-110
Author(s):  
Baran Bozyigit

In this study, the dynamic response of beams resting on two-parameter elastic foundation subjected to moving load is investigated by using the transfer matrix method (TMM). The Timoshenko beam theory (TBT) which considers shear deformation and rotational inertia is used to model the beam. The two-parameter elastic foundation model is selected as Pasternak foundation that takes into account a shear layer at the end of linear springs of Winkler foundation. The TMM which uses the relation between analytically obtained state vectors of each end of the beam is applied to solve the free vibration problem. After performing the free vibration analysis, the mathematical model is simplified into an equivalent single degree of freedom (SDOF) system by using the exact mode shapes to obtain dynamic responses. The generalized displacement is calculated for each mode by using the Runge-Kutta algorithm. A numerical case study is presented for a simply-supported Timoshenko beam on the Pasternak foundation subjected to a concentrated load. The natural frequencies obtained from finite element method (FEM) results of SAP2000 are presented with the results of TMM for comparison purposes using the Winkler foundation. The effects of shear layer on the natural frequencies of the model are revealed. The mode shapes are plotted. The proposed approach for calculating dynamic responses is validated by using the results of FEM for Winkler foundation model. Then, the effects of Winkler springs and shear layer of the foundation model on the dynamic responses are presented in figures. The effects of modal damping are discussed. Finally, the critical velocities for the model are calculated for various elastic foundation scenarios and the effects of elastic foundation parameters on the dynamic response of beam model subjected to moving load with high velocity are observed.


Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on its symmetrical or antisymmetrical property about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


1996 ◽  
Vol 118 (2) ◽  
pp. 141-146 ◽  
Author(s):  
S. Abrate

While many advances were made in the analysis of composite structures, it is generally recognized that the design of composite structures must be studied further in order to take full advantage of the mechanical properties of these materials. This study is concerned with maximizing the fundamental natural frequency of triangular, symmetrically laminated composite plates. The natural frequencies and mode shapes of composite plates of general triangular planform are determined using the Rayleigh-Ritz method. The plate constitutive equations are written in terms of stiffness invariants and nondimensional lamination parameters. Point supports are introduced in the formulation using the method of Lagrange multipliers. This formulation allows studying the free vibration of a wide range of triangular composite plates with any support condition along the edges and point supports. The boundary conditions are enforced at a number of points along the boundary. The effects of geometry, material properties and lamination on the natural frequencies of the plate are investigated. With this stiffness invariant formulation, the effects of lamination are described by a finite number of parameters regardless of the number of plies in the laminate. We then determine the lay-up that will maximize the fundamental natural frequency of the plate. It is shown that the optimum design is relatively insensitive to the material properties for the commonly used material systems. Results are presented for several cases.


1966 ◽  
Vol 56 (6) ◽  
pp. 1207-1226
Author(s):  
W. O. Keightley

Abstract An earth dam was excited into vibrations, in the upstream-downstream direction, by four rotating eccentric-mass vibration generators which were operated on the crest. Natural frequencies, mode shapes, and equivalent viscous modal damping constants of the dam were revealed by the forced vibrations. A theoretical analysis of the dam, based on consideration of shearing deformations only, shows moderately good agreement with the behavior which was observed at the lower frequencies.


Author(s):  
Yoshihiro Narita

Abstract The free vibration behavior of rectangular plates provides important technical information in structural design, and the natural frequencies are primarily affected by the boundary conditions as well as aspect and thickness ratios. One of the three classical edge conditions, i.e., free, simple supported and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations, the present paper introduces the Polya counting theory in combinatorial mathematics, and formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three edge conditions and is used to numerically verify the numbers. In numerical experiments, the number of combinations in the free vibration behaviors is determined for some plate models by using the derived formulas, and are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the Ritz method.


2011 ◽  
Vol 393-395 ◽  
pp. 149-152
Author(s):  
Bao Ying Xing ◽  
Xiao Cong He ◽  
Mo Sheng Feng

This paper studies the influence of adhesive dimensions on the transverse free vibration of the single-lap adhesive cantilevered beams. The researches are performed by employing software ansys .Efficient analytic results of natural frequencies and mode shapes of transverse free vibration of the beams are provided, corresponding to different adhesive dimensions of bonded thicknesses and bondlines length. Bondlines length has more significant influence on the transverse natural frequencies and the lap joint’s mode shapes of the beams than bonded thickness. The transverse natural frequencies decrease with a decrease in the bondlines length of adhesive, but do not appear to variation observably with a decrease in the bonded thickness. Bondlines length shorting, the lap joint has a sharper mode shape. Simultaneously, the lap joint of even mode shapes influences the dynamic response of the beams significantly. These results indicate a local crack in adhesive layers because of the existence of stress concentration.


2013 ◽  
Vol 20 (1) ◽  
pp. 79-96 ◽  
Author(s):  
M.H. Kargarnovin ◽  
M.T. Ahmadian ◽  
R.A. Jafari-Talookolaei

This paper presents the dynamic response of a delaminated composite beam under the action of a moving oscillating mass. In this analysis the Poisson's effect is considered for the first time. Moreover, the effects of rotary inertia and shear deformation are incorporated. In our modeling linear springs are used between delaminated surfaces to simulate the dynamic interaction between sub-beams. To solve the governing differential equations of motion using modal expansion series, eigen-solution technique is used to obtain the natural frequencies and their corresponding mode shapes necessary for forced vibration analysis. The obtained results for the free and forced vibrations of beams are verified against reported similar results in the literatures. Moreover, the maximum dynamic response of such beam is compared with an intact beam. The effects of different parameters such as the velocity of oscillating mass, different ply configuration and the delamination length, its depth and spanwise location on the dynamic response of the beam are studied. In addition, the effects of delamination parameters on the oscillator critical speed are investigated. Furthermore, different conditions under which the detachment of moving oscillator from the beam will initiate are investigated.


Sign in / Sign up

Export Citation Format

Share Document