scholarly journals Genetic Variation and Population Structure of Dendropanax morbifera Lev. (Araliaceae) in Korea

2006 ◽  
Vol 55 (1-6) ◽  
pp. 7-13 ◽  
Author(s):  
S. H. Kim ◽  
Y. S. Jang ◽  
J. G. Han ◽  
H. G. Chung ◽  
S.W. Lee ◽  
...  

Abstract Dendropanax morbifera Lev. (Araliaceae) is an economically important tree species because of its role in the production of golden varnishes as well as its use as an ornamental plant. As an endemic tree species of Korea, it is restricted to the southern parts of Korea as isolated populations. In this study, eight natural populations of D. morbifera were investigated by starch-gel electrophoresis in an attempt to determine the extent of its genetic diversity. Out of 8 natural populations, the Suak population in Jeju island showed the lowest level of genetic diversity, while the Wando island population in Jeonnam showed the highest level of genetic diversity. Levels of genetic diversity maintained in D. morbifera (A/L =1.5, P95 = 27.3%, Ho = 0.100, He = 0.095) were notably lower than those of other tree species with wider and more continuous geographic distributions. The reasons for the low level of genetic diversity in D. morbifera might be due to the genetic drift caused by artificial disturbances. Most of the total genetic diversity (96%) was found within the populations. The UPGMA dendrogram based on Nei’s genetic distance did not show any particular geographic patterns. The low level of genetic diversity suggested that there should be an urgent emphasis on the conservation study of this species.

2003 ◽  
Vol 1 (2-3) ◽  
pp. 143-149 ◽  
Author(s):  
Agnese Kolodinska Brantestam ◽  
Roland von Bothmer ◽  
Isaak Rashal ◽  
Jens Weibull

AbstractIn this study an evaluation was made of changes in the genetic variation of barley (Hordeum vulgare L.) of Nordic and Baltic origin, from the end of the 19th century until today. A comparison of Nordic and Baltic material with exotic material that has not been subjected to intense selection was also made. A total of 293 accessions, including 160 Nordic and 80 Baltic landraces, cultivars and breeding lines, and another 53 landraces of exotic origin (Central Asia), were surveyed using isozyme starch gel electrophoresis. For the four isozymes studied, 28 alleles at 11 loci were observed. The average total genetic diversity value (HT) for individual loci ranged between 0 and 0.519. In the exotic material nine loci were polymorphic and two monomorphic, compared to seven polymorphic and four monomorphic loci in the Nordic and Baltic material. Some of the rare alleles were detected only in the exotic material. The studied isozyme loci of Nordic and Baltic material indicated that modern cultivars have a lower average genetic diversity value compared to the landraces, old and exotic material.


1978 ◽  
Vol 68 (1) ◽  
pp. 85-97 ◽  
Author(s):  
S. J. Miles

AbstractThe genotypes of chromosomally-identified individuals from natural populations of the known species of the group of Anopheles gambiae Giles were scored for the enzyme protein structural loci coding for adenylate kinase (Adk), α-naphthyl acetate esterase (Est-1, Est-2, Est-3), glutamic-oxaloacetic transaminase (Got), α-glycerophosphate dehydrogenase (αGpd), hexokinase (Hk), isocitric dehydrogenase (Idh), lactic dehydrogenase (Ldh), ‘leucine’ aminopeptidase (Lap-2), malic enzyme (Me), octanol dehydrogenase (Odh), phosphoglucomutase (Pgm-1, Pgm-2), 6-phosphogluconic dehydrogenase (6-Pgd), phosphohexose isomerase (Phi) and superoxide dismutase (Sod), following starch gel electrophoresis. In the material examined, Est-1, Est-2, Est-3, Got, ldh, Lap-2, Odh, Pgm-1, Pgm-2 and Sod were segregating for two or more alleles; unique alleles at the Est-1, Got and Sod loci produced species-specific phenotypes in A. melas (Theo.), species C and species D, respectively. The further sampling of A. merus Dön, populations supported the presence of a unique SOD phenotype by which this species can also be identified. Of the other enzyme systems examined, no activity following electrophoresis was detected for aldolase and fructose-1,6-diphosphatase, and the resolution of acid and alkaline phosphatase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, malic dehydrogenase and xanthine dehydrogenase was too poor under the particular electrophoretic conditions for genetic analyses of the enzyme phenotypes.


1977 ◽  
Vol 7 (2) ◽  
pp. 343-347 ◽  
Author(s):  
D. P. Fowler ◽  
R. W. Morris

Starch gel electrophoresis was used to survey for genetically determined enzyme mobility differences among 297 megagametophytes of red pine (Pinusresinosa Ait.) from five widely separated geographical sources. Consistent and reproducible enzyme banding patterns were observed with five of the seven isozyme systems assayed. No variation in band mobility was observed in any of these systems. This result stands in contrast with those reported from surveys of allozyme variation in other coniferous species but is consistent with the low degree of genetic variation observed in red pine for higher levels of genetic organization. It is concluded that red pine is genetically depauperate.Possible explanations for restricted genetic diversity are discussed. The most plausible explanation suggests that red pine was at sometime, possibly during the Pleistocene, reduced to a small refugial population and has yet to reestablish equilibrium heterozygosity.


1972 ◽  
Vol 20 (1) ◽  
pp. 19-42 ◽  
Author(s):  
Francisco J. Ayala ◽  
Jeffrey R. Powell ◽  
Martin L. Tracey

SUMMARYWe have studied genetic variation at 27 loci in 42 samples from natural populations of a neotropical species, Drosophila equinoxialis, using standard techniques of starch-gel electrophoresis to detect allelic variation in genes coding for enzymes. There is considerarle genetic variability in D. equinoxialis. We have found allelic variation in each of the 27 loci, although not in every population. On the average, 71% of the loci are polymorphic – that is, the most common allele has a frequency no greater than 0·95 – in a given population. An individual is heterozygous on the average at 21·8% of its loci.The amount of genetic variation fluctuates widely from locus to locus. At the Mdh-2 locus arout 1% of the individuals are heterozygotes; at the other extreme more than 56% of the individuals are heterozygous at the Est-3. At any given locus the configuration of allelic frequencies is strikingly similar from locality to locality. At each and every locus the same allele is generally the most common throughout the distribution of the species. Yet differences in gene frequencies occur between localities. The pattern of genetic variation is incompatible with the hypothesis that the variation is adaptively neutral. Genetic variation in D. equinoxialis is maintained by balancing natural selection.The amount and pattern of genetic variation is similar in D. equinoxialis and its sibling species, D. willistoni. Yet the two species are genetically very different. Different sets of alleles occur at nearly 40% of the loci.


1996 ◽  
Vol 74 (7) ◽  
pp. 1138-1146 ◽  
Author(s):  
Brett G. Purdy ◽  
Randall J. Bayer

As part of an analysis of genetic diversity in endemic taxa of the Athabasca sand dunes in northern Saskatchewan, Canada, genetic variation was examined by starch gel electrophoresis in six populations of the endemic Achillea millefolium ssp. megacephala, and 13 populations of the closely related widespread taxon, A. millefolium ssp. lanulosa. Endemic populations had more alleles per locus, a higher percentage of polymorphic loci, and greater genetic diversity than did populations of the widespread taxon. At polymorphic loci, total gene diversity was comparable in both taxa, although within-population gene diversity was higher in the endemic taxon. Population differentiation (GST) was considerably lower in ssp. megacephala than in ssp. lanulosa, although GST values were reduced when the parameter was calculated separately for geographic subdivisions of the widespread taxon. Our results differ from previous studies in which the endemic is typically depauperate of genetic variation relative to related widespread species. We suggest that obligate sexual reproduction and the absence of long-term asexual reproduction may be one of a number of factors that help populations of ssp. megacephala maintain higher levels of genetic variation on the Athabasca sand dunes. Keywords: genetic variation, endemic, rare species, Athabasca sand dunes, Achillea millefolium.


2019 ◽  
Vol 85 ◽  
pp. 81
Author(s):  
Fabiola Magallán Hernández ◽  
Mahinda Martínez ◽  
Luis Hernández Sandoval ◽  
Ken Oyama

<em>Eriocaulon bilobatum</em> is an aquatic species that inhabits temporary wetlands in central Mexico. It is annual, herbaceous, emergent, with sexual and asexual reproduction, monoecious and insect pollinated. It is a rare and vulnerable species due to its endangered habitats. The objectives of this study were to determine the diversity and genetic structure of <em>E. bilobatum </em> and to know if there is a correlation with genetic diversity and its ecological and life history traits. Using horizontal starch-gel electrophoresis, we screened 160 individuals from four populations. <em>E. bilobatum</em> has a higher genetic diversity (A=2.32, Ae=1.31, P=69.65, Ho=0.134, He=0.197, HT=0.221) than species with similar ecological and life history traits, moderate levels of inbreeding (FIS = 0.312) and low genetic differentiation among populations (FST = 0.053 y GST = 0.048). Its diversity and genetic structure are determined by the mating system and life history traits, more than by inhabiting aquatic environments.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Micheli Sossai Spadeto ◽  
Thais Lazarino Maciel ◽  
Tatiana Tavares Carrijo ◽  
Marcia Flores da Silva Ferreira ◽  
Milene Miranda Praça Fontes

Abstract The investigation of genetic diversity in natural populations of species that show potential for use in reforestation programs is a key step in making management decisions. However, reforestation programs with native species in Brazil are still rarely based on a genetic understanding of the seed matrices used for seedling production. This is also the case for Myrsine umbellata, a dioecious shrub within the family Primulaceae that has been used in reforestation programs in Brazil, mainly due to its high production capacity of fruits attractive to the avifauna. The goal of this study was to measure intra- and interpopulational genetic diversity in natural populations of M. umbellata in six forest remnants of the Atlantic Forest using ISSR markers. The results revealed that the intrapopulational genetic diversity was greater than the genetic diversity among the studied populations. For this reason, the cultivation of seedlings from seeds obtained in more than one population seems the most appropriate strategy for reforestation purposes. Even though the most isolated populations are also the ones with highest genetic structure, all populations of M. umbellata included in this study revealed to be an important germplasm bank conserved in situ.


1978 ◽  
Vol 5 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Gabor Vida

Increasing evidence indicates that a major portion of the enormous amount of polymorphism present in natural populations is maintained by natural selection. This polymorphism is necessary for adaptation. In the absence of a suitable amount of genetic diversity, a species will tend to die out in a changing environment.The genetic diversity of most species has been considerably reduced in historical times. Breeding for uniformity, and reduction in the number and size of wild populations, are largely responsible for this loss. Replacement of a natural forest ecosystem by modern agriculture reduces the genetic diversity by three orders of magnitude at the very least. A comparison of the estimated prehistoric and present amount of genetic diversity leads to the alarming conclusion that we may already have lost as much as 90% of the total genetic diversity of the biosphere. Further loss is expected because of the rapid growth of human population.


Weed Science ◽  
1987 ◽  
Vol 35 (4) ◽  
pp. 506-512 ◽  
Author(s):  
Michael J. Horak ◽  
Jodie S. Holt ◽  
Norman C. Ellstrand

Genetic diversity within and among populations of yellow nutsedge (Cyperus esculentusL. # CYPES) was analyzed to evaluate and quantify the genetic consequences of the reported predominance of asexually-produced tubers as colonizing agents. Ten populations were examined using starch gel electrophoresis for allozyme analysis. Four populations of purple nutsedge (Cyperus rotundusL. # CYPRO) were surveyed for comparison. Twelve loci were identified in yellow nutsedge among the eight enzyme systems examined; ten of these loci were found in purple nutsedge. Yellow nutsedge showed relatively low genetic diversity. Most of the genetic diversity occurred as differences among individuals within populations (Hs), compared to differences among populations (Dst) for the four variable loci identified in this species. Thus, most genetic distancesbetween its populations were small. Generally, only a few genotypes occurred within each population. Purple nutsedge was found to possess even lower within- and among-population gene and genotypic diversity. This study supports the view that tubers account for most of the establishment of new populations of both species.


Sign in / Sign up

Export Citation Format

Share Document