scholarly journals Effects of environmental changes and human impact on the functioning of mountain river channels, Carpathians, southern Poland

Author(s):  
Kazimierz Krzemień ◽  
Elżbieta Gorczyca ◽  
Mateusz Sobucki ◽  
Maciej Liro ◽  
Michał Łyp

Abstract In the northern slope of the Carpathian Mountains and in their foreland, river and stream channels have been significantly transformed by human impact. These transformations result from changing land use in river basins and direct interference with river channels (alluvia extraction, engineering infrastructure, channel straightening). Anthropogenic impacts cause significant changes in the channel system patterns leading to increased impact of erosion. This mainly leads to the channelling of the fluvial system. This article reviews studies of structure and dynamics of Carpathian river channels conducted based on the methodology of collection of data on channel systems, developed in the Department of Geomorphology of the Institute of Geography and Spatial Management, Jagiellonian University.

2020 ◽  
Author(s):  
Stephen E. Watkins ◽  
Nikhil Sharma ◽  
Luis Valero ◽  
Maxime Tremblin ◽  
Abdallah S. Zaki ◽  
...  

<p><span>Stratigraphic architecture of fluvial deposits is often interpreted as a record of changes in accommodation created by absolute sea-level change, subsidence, or a combination of both (downstream drivers). An increase or decrease in accommodation causes the fluvial system to respond by either aggrading or degrading to a new equilibrium slope. However, in recent years the role of upstream drivers, such as water discharge and sediment supply (volume and grain-size distribution), in controlling equilibrium slopes has gained more importance, however we still lack significant understanding of these upstream processes. It is important to be able to differentiate between stratigraphy influenced by upstream and downstream drivers in the field because fluvial deposits represent an important archive of environmental changes.  Traditionally, downstream drivers are often invoked to explain past accommodation changes, but in actuality there are rarely robust constraints on the cause of these space changes. At present there is still no well-documented examples of upstream versus downstream driven stratigraphic architecture. One way to address this issue is by undertaking analogue modelling (i.e. flume experiments) as this permits the isolation of individual parameters, such as water discharge, and allows us to investigate their role on the fluvial system in a controlled environment. </span></p><p><span> </span></p><p><span>In the first part of the project that we present here, we investigate how sediment aggradation within a channel develops through time by using a quasi-2D flume.  We have designed and manufactured a narrow (0.05 m), long (2.4 m) flume with an initial gradient of zero.  We aim to (i) investigate how aggradation occurs through time using a series of different water discharges, sediment supplies and sediment concentrations and observe the resulting equilibrium slopes; (ii) perturb the system once equilibrium is reached to observe the readjustment of the system to new conditions; (iii) carry out a series of experiments varying downstream drivers (i.e. sea-level) which theoretically produce the same amount of aggradation as the upstream parameters we have used do, we will then be able to compare any similarities or differences in stratigraphy.  Ultimately we will use these results to scale up to a fully three-dimensional analogue model (i.e. a wide flume, approximately 1 m) that produces channels and floodplains.  We can then investigate how the upstream and downstream changes seen in the narrow flume are translated into the wider flume.</span></p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Helena Teixeira ◽  
Vincent Montade ◽  
Jordi Salmona ◽  
Julia Metzger ◽  
Laurent Bremond ◽  
...  

AbstractQuaternary climatic changes have been invoked as important drivers of species diversification worldwide. However, the impact of such changes on vegetation and animal population dynamics in tropical regions remains debated. To overcome this uncertainty, we integrated high-resolution paleoenvironmental reconstructions from a sedimentary record covering the past 25,000 years with demographic inferences of a forest-dwelling primate species (Microcebus arnholdi), in northern Madagascar. Result comparisons suggest that climate changes through the African Humid Period (15.2 – 5.5 kyr) strongly affected the demographic dynamics of M. arnholdi. We further inferred a population decline in the last millennium which was likely shaped by the combination of climatic and anthropogenic impacts. Our findings demonstrate that population fluctuations in Malagasy wildlife were substantial prior to a significant human impact. This provides a critical knowledge of climatically driven, environmental and ecological changes in the past, which is essential to better understand the dynamics and resilience of current biodiversity.


Erdkunde ◽  
2009 ◽  
Vol 63 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Rüdiger Mäckel ◽  
Arne Friedmann ◽  
Dirk Sudhaus

2008 ◽  
Vol 72 (1) ◽  
pp. 411-413 ◽  
Author(s):  
T. Eskola ◽  
V. Peuraniemi

AbstractLake sediments were studied from four lakes in environmentally different areas in northern Finland. Lakes Pyykösjärvi and Kuivasjärvi are situated near roads with heavy traffic and the city of Oulu. Lakes Martinlampi and Umpilampi are small lakes in a forest area with no immediate human impact nearby. The concentration of Pb increases in the upper parts of the sedimentary columns of Lake Kuivasjärvi and Lake Pyykösjärvi. This is interpreted as being an anthropogenic effect related to heavy traffic in the area and use of Lake Pyykösjärvi as an airport during World War II. High Ni and Zn concentrations in the Lake Umpilampi sediments are caused by weathered black schists. Sediments in Lake Martinlampi show high Pb and Zn contents with increasing Pb concentrations up through the sedimentary column. The sources of these elements are probably Pb-Zn mineralization in the bedrock, Pb-Zn-rich boulders and anomalous Pb and Zn contents in till in the catchment area of the lake.


Author(s):  
O. P. Yermolaev ◽  
V. N. Golosov ◽  
M. V. Kumani ◽  
L. F. Litvin ◽  
I. I. Rysin ◽  
...  

Abstract. Quantitative assessments of soil loss from cultivated land and sediment redistribution along pathways from cultivated fields to river channels have been undertaken using a range of different methods and techniques, including erosion models, detailed studies of sediment redistribution in representative catchments, monitoring of gully head retreat and evaluation of sediment deposition in ponds and small reservoirs. Most of the sediment eroded from arable land is deposited between the lower portions of the cultivated slopes and the river channels. Less than 15% of the eroded sediment is delivered to the river channels. Sediment redistribution rates in the upper parts of the fluvial system have declined during the last 25 years in both the western and eastern parts of the Russian Plain, because of a major reduction of surface runoff during snowmelt and a reduction of the area of arable land in some parts of the study area.


Geomorphology ◽  
2007 ◽  
Vol 83 (3-4) ◽  
pp. 197-198 ◽  
Author(s):  
Anne Chin ◽  
Ellen Wohl

BioScience ◽  
2020 ◽  
Vol 70 (5) ◽  
pp. 427-438 ◽  
Author(s):  
Núria Cid ◽  
Núria Bonada ◽  
Jani Heino ◽  
Miguel Cañedo-Argüelles ◽  
Julie Crabot ◽  
...  

Abstract Rapid shifts in biotic communities due to environmental variability challenge the detection of anthropogenic impacts by current biomonitoring programs. Metacommunity ecology has the potential to inform such programs, because it combines dispersal processes with niche-based approaches and recognizes variability in community composition. Using intermittent rivers—prevalent and highly dynamic ecosystems that sometimes dry—we develop a conceptual model to illustrate how dispersal limitation and flow intermittence influence the performance of biological indices. We produce a methodological framework integrating physical- and organismal-based dispersal measurements into predictive modeling, to inform development of dynamic ecological quality assessments. Such metacommunity-based approaches could be extended to other ecosystems and are required to underpin our capacity to monitor and protect ecosystems threatened under future environmental changes.


The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Agnieszka Mroczkowska ◽  
Piotr Kittel ◽  
Katarzyna Marcisz ◽  
Ekaterina Dolbunova ◽  
Emilie Gauthier ◽  
...  

Peatlands are important records of past environmental changes. Based on a multiproxy analysis, the main factors influencing the evolution of a peatland can be divided into autogenic and allogenic. Among the important allogenic factors, apart from climate change, are deforestation and drainage, which are directly associated with human impact. Numerous consequences arise from these processes, the most important of which are physical and chemical denudation in the catchment and the related hydrological disturbances in the catchment and peatland. The present study determined how human activities and the past climatic variability mutually influenced the development of a small peatland ecosystem. The main goals of the study were: (1) to trace the local changes of the peatland history over the past 600 years, (2) to investigate their relationship with changes in regional hydroclimate patterns, and (3) to estimate the sensitivity of a small peatland to natural and human impact. Our reconstructions were based on a multiproxy analysis, including the analysis of pollen, macrofossils, Chironomidae, Cladocera, and testate amoebae. Our results showed that, depending on the changes in water level, the history of peatland can be divided into three phases as follows: 1/the phase of stable natural conditions, 2/phase of weak changes, and 3/phase of significant changes in the catchment. Additionally, to better understand the importance of the size of catchment and the size of the depositional basin in the evolution of the studied peatland ecosystem, we compared data from two peatlands – large and small – located close to each other. The results of our study indicated that “size matters,” and that larger peatlands are much more resilient and resistant to rapid changes occurring in the direct catchment due to human activities, whereas small peatlands are more sensitive and perfect as archives of environmental changes.


2020 ◽  
Author(s):  
Amélie Duquesne ◽  
Christine Plumejeaud-Perreau ◽  
Jean-Michel Carozza

<p><span>Although many studies have analyzed the impact of human interventions on European rivers over decades or centuries, researchers have rarely evaluated the geomorphological effects of these anthropogenic pressures on fluvial systems. However, quantifying anthropogenic impacts is fundamental to understanding how rivers are affected by human interventions and to improving the river management and restoration. The aim of this study is to propose a new and original qualitative method to estimate the importance of human impacts on rivers over the last three centuries using the middle Charente River as a test case. The study area is an anastomosing, low-energy and little mobile river of the lowlands of Western France. It extends from the city of Angoulême (Charente) to the city of Saintes (Charente-Maritime), with a length of approximately 100 km. The study segment has been subjected to high anthropogenic pressure since the High Middle Ages, and it was enhanced during the 19th century to facilitate navigation and terrestrial transportation, to ensure the exploitation of the water's driving force (water mills and paper mills), to maintain the local people (fishing dams and agro-pastoral uses) and to allow for flood protection. To understand and estimate the anthropogenic heritage of the Charente River, this study employed a two-stage method: 1) an inventory of the human interventions on the fluvial system through the consultation of geo-historical data (textual archives, historical maps and iconography) dating from the end of the 17th century to the 2010s and 2) an evaluation of the human impact of each human intervention, sub-category and category of intervention based on the calculation of the Cumulative Human Impact Index. The Cumulative Human Impact Index is composed of several qualitative attributes graded by an evaluator. The results allow one 1) to generate a database and typology of the human interventions affecting the middle Charente River over the long term; 2) to map the cumulative impacts of human interventions on the study area; and 3) to analyze the unitary and overall impact of each human intervention, sub-category and category of intervention on the river landscape's heritage. Finally, this study concludes with 1) a discussion of the advantages of using a qualitative methodology for the estimation of anthropogenic impacts and 2) a reflection on the use of the maps of cumulative human impacts for Charente River management and restoration.</span></p>


Sign in / Sign up

Export Citation Format

Share Document