scholarly journals Evaluation of concrete deterioration under simulated acid rain environment

2019 ◽  
Vol 14 (1) ◽  
pp. 47-54
Author(s):  
Michaela Smolakova ◽  
Adriana Estokova

Abstract Acid rain is identified as one of the most serious environmental problems nowadays and it is mainly a mixture of sulfuric and nitric acids. Deterioration of concrete structures exposed to aggressive acid rain attack is a key durability issue that affects the performance and maintenance costs of vital civil infrastructures. The motivation for understanding the acid rain corrosion process is high because of the early age deterioration of many concrete structures exposed to acid rain. The main objective of this study was to investigate the durability of concrete specimens with different supplementary cementitious materials, such as fly ash, zeolite and blast furnace slag against acid rain attack. Experiments of acid rain simulation influence on the composites were carried out for 7 weeks and parameters like visual changes, absorbability and leachability of calcium and silicon ions were evaluated. The increase in absorbability was detected for all samples while the sample with blast furnace slag was identified to be the most durable in this point of view. The most durable sample considering leached-out calcium and silicon ions was found to be sample with fly ash.

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7869
Author(s):  
Rajagopalan Sam Rajadurai ◽  
Su-Tae Kang

Supplementary cementitious materials (SCMs), such as fly ash (FA), blast furnace slag (BS), and silica fume (SF), have been mostly used as a replacement for Portland cement (PC). Replacing the SCMs with cement can provide improved strength characteristics; however, their applicability depends on the flow characteristics of the fresh mixtures. In this study, the rheological performance of cementitious suspensions in paste scale with different water-to-solid (W/S) volume ratios, varied from 1.25, 1.50, 1.75, 2.00, 2.25, to 2.50, was evaluated. As a result of the rheological tests, the yield stress and plastic viscosity of PC, FA, BS, and SF suspensions decreased as the W/S ratio increased. This study also estimated the inter-particle distances of the cementitious suspensions, and their relationship to the rheological properties was established. The inter-particle distances of the PC, FA, BS, and SF suspensions were in the ranges of 5.74~14.67 µm, 5.18~11.66 µm, 3.82~9.34 µm, and 0.107~0.27 µm, respectively. For very fine particles with a large surface area, the sensitivity to the rheological properties was high and the sensitivity was low when the particle sizes increased, indicating that the rheological properties were more sensitive to fine particles.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1798
Author(s):  
Yanfei Yue ◽  
Jing Jing Wang ◽  
P. A. Muhammed Basheer ◽  
Yun Bai

Establishing the carbonation profile is of great significance to the prediction of the service life of reinforced concrete structures. In our previous work, Raman spectroscopy was shown to be an efficient tool for characterizing calcium carbonate (CaCO3) polymorphs and their profile in plain Portland cement (PC) matrices. However, as supplementary cementitious materials (SCMs), particularly fly ash (FA) and ground granulated blast furnace slag (GGBS), are widely used in concrete, establishing the carbonation profile without considering the possible effects of these SCMs could be of little significance to the real world. This paper, thus, investigated the effects of FA and GGBS on the working capacity and reliability of Raman spectroscopy for establishing the carbonation profile in PC blends containing SCMs. The thermogravimetry (TG) analysis was also conducted to verify the results from Raman spectroscopy. The results show that Raman spectroscopy demonstrated a good capacity for differentiating the variation of CaCO3 contents in FA or GGBS blends. However, the incorporation of FA and GGBS into the PC system caused some adverse effects on the quantification of CaCO3 by Raman spectroscopy, which could be attributed to the darker color and weak scatter nature of FA and the high content of glassy phases in GGBS.


Author(s):  
Hitoshi Owada ◽  
Tomoko Ishii ◽  
Mayumi Takazawa ◽  
Hiroyasu Kato ◽  
Hiroyuki Sakamoto ◽  
...  

A “realistic alteration model” is needed for various cementitious materials. Hypothetical settings of mineral composition calculated based on the chemical composition of cement, such as Atkins’s model, have been used to estimate the alteration of cementitious material. However, model estimates for the concentration of certain elements such as Al and S in leachate have been different from experimental values. In a previous study, we created settings for a mineralogical alteration model by taking the initial chemical composition of cementitious materials from analysis results in experiments and applying their ratios to certain hydrated cement minerals, then added settings for secondary generated minerals in order to account for Ca leaching. This study of alteration estimates for ordinary portland cement (OPC) in groundwater showed that the change in Al and S concentrations in simulated leachate approached values for actual leachate[1]. In the present study, we develop an appropriate mineral alteration model for blended cementitious materials and conduct batch-type leaching experiments that use crushed samples of blast furnace slag cement (BFSC), silica cement (SC), and fly ash cement (FAC). The cement blends in these experiments used OPC blended with blast furnace slag of 70 wt.%, silica cement consisting of an amorphous silica fine powder of 20 wt.%, and fly ash of 30 wt.%. De-ionized water was used as the leaching solution. The solid-liquid ratios in the leaching tests were varied in order to simulate the alteration process of cement hydrates. The compositions of leachate and minerals obtained from leaching tests were compared with those obtained from models using hypothetical settings of mineral composition. We also consider an alteration model that corresponds to the diversity of these materials. As a result of applying the conventional OPC model to blended cementitious materials, the estimated Al concentration in the aqueous solution was significantly different from the measured concentration. We therefore propose an improved model that takes better account of Al behavior by using a more reliable initial mineral model for Al concentration in the solution.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5190
Author(s):  
Laura Boquera ◽  
David Pons ◽  
Ana Inés Fernández ◽  
Luisa F. Cabeza

Six supplementary cementitious materials (SCMs) were identified to be incorporated in concrete exposed to high-temperature cycling conditions within the thermal energy storage literature. The selected SCMs are bauxite, chamotte, ground granulated blast furnace slag, iron silicate, silica fume, and steel slag. A microstructural characterization was carried out through an optical microscope, X-ray diffraction analysis, and FT-IR. Also, a pozzolanic test was performed to study the reaction of SCMs silico-aluminous components. The formation of calcium silica hydrate was observed in all SCMs pozzolanic test. Steel slag, iron silicate, and ground granulated blast furnace slag required further milling to enhance cement reaction. Moreover, the tensile strength of three fibers (polypropylene, steel, and glass fibers) was tested after exposure to an alkalinity environment at ambient temperature during one and three months. Results show an alkaline environment entails a tensile strength decrease in polypropylene and steel fibers, leading to corrosion in the later ones.


2020 ◽  
Vol 16 (3) ◽  
pp. 185
Author(s):  
Rizki Amalia Tri Cahyani ◽  
Ernawan Setyono ◽  
Yunan Rusdianto

Serangan sulfat (sulfate attack) termasuk hal yang umum terjadi pada struktur beton, mengingat ion sulfat banyak dijumpai pada tanah, air tanah dan air laut. Peningkatan ketahanan beton melawan sulfat akan berdampak besar pada durabilitas dan umur layan struktur beton. Penambahan supplementary cementitious materials seperti GGBFS (ground granulated blast furnace slag) ke campuran beton telah terbukti memberikan pengaruh positif terhadap durabilitas dan properti mekanis beton. Namun, GGBFS tergolong material yang baru dikembangkan di Indonesia dan potensinya dalam meningkatkan durabilitas beton belum dimanfaatkan secara luas. Berdasarkan hal tersebut, perlu dilakukan investigasi terkait aplikasi GGBFS dan pengaruhnya terhadap durabilitas beton, terutama dalam melawan serangan sulfat. Dalam studi ini, durabilitas beton dengan persentase penggantian GGBFS 30%, 50% dan 70% terhadap total volume binder dievaluasi menggunakan perlakuan siklus basah-kering dalam larutan magnesium sulfat. Tingkat degradasi beton diukur dengan melakukan observasi terhadap perubahan kuat tekan dan massa spesimen akibat serangan sulfat. Hasil penelitian menunjukkan bahwa penggantian GGBFS hingga 50% dari total volume binder dapat meningkatkan ketahanan beton terhadap serangan sulfat, ditunjukkan dengan kehilangan massa dan reduksi kekuatan yang lebih rendah dibandingkan spesimen kontrol dengan 100% semen Portland.


2021 ◽  
Vol 17 ◽  
pp. 271-281
Author(s):  
Efstratios Badogiannis ◽  
Eirhnh Makrinou ◽  
Marianna Fount

A study on the durability parameters of normal and lightweight aggregate mortars, incorporated different supplementary cementitious materials (SCM) is presented. Mortars were prepared using limestone or pumice as aggregates and Metakaolin, Fly ash, Granulated Blast Furnace Slag and Silica Fume, as SCM, that they replaced cement, at 10 % by mass. Ten different mortars, having same water to binder ratio and aggregate to cement volumetric ratio, they were compared mainly in terms of durability. The use of pumice sand was proved to be effective not only to the density of the mortars as it was expected, but also in durability, fulfilling at the same time minimum strength requirements. The addition of the different SCM further enhanced the durability of the mortars, where Metakaolin was found to be the most effective one, especially against chloride’s ingress.


2021 ◽  
Vol 309 ◽  
pp. 01202
Author(s):  
G.V.V. Satyanarayana ◽  
Kaparaboina Greeshma

The alternative to cement is grabbing attention of inventors due to the numerous advantages with their usage. Fly Ash (FA) and Blast furnace slag (BFS) are abundantly available in bi product form. There is heavy problem in disposal and land availability for industries. So many studies are going on to reduce these problems by usage as cementitious materials in concrete adding advantages towards green concrete. It is developed that Alkali activated flyash concrete has high strength, high acid resistance and heat resistance where as Alkali activated slag concrete has rapid setting time, high strength, impermeable and improved fire resistance. In this study FA and BFS are activated with high silica modulus activator with different activator/binder ratios and binder contents. The alkali activated FA-BFS concrete is verified for workability, compressive strength, split tensile strength, and flexural strength.


Sign in / Sign up

Export Citation Format

Share Document